Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna
In conjunction with future development of technologies, current wireless systems available have not kept pace. The great interest in wideband systems is because the needed of high data rate wireless transmission and a wireless connectivity for longer range applications. With the latest technology...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2017
|
| Subjects: | |
| Online Access: | http://eprints.usm.my/39581/ http://eprints.usm.my/39581/1/NABILA_HUSNA_BT_MOHAMMAD_AMIN_24_Pages.pdf |
| _version_ | 1848878786131525632 |
|---|---|
| author | Mohammad Amin, Nabila Husna |
| author_facet | Mohammad Amin, Nabila Husna |
| author_sort | Mohammad Amin, Nabila Husna |
| building | USM Institutional Repository |
| collection | Online Access |
| description | In conjunction with future development of technologies, current wireless systems
available have not kept pace. The great interest in wideband systems is because the
needed of high data rate wireless transmission and a wireless connectivity for longer
range applications. With the latest technology, the microwave radio link device
become smaller and cheaper, therefore, require an antenna which is not only small in
size and reasonable price. This can be only achieved by using parabolic antenna.
The typical parabolic antenna are using solid aluminium dish reflector and the gain is
depending on the size of the reflector. Based on previous research a few techniques
on enhancing the bandwidth such as using stacked DRA with microstrip line feed are
applied in this works. This thesis describes the development of cylindrical dielectric
resonator antenna fed for parabolic antenna. The implementation of stacked DRA,
aperture coupling and the perforated DRA are shown in this research. The simulation
is being done in CST microwave at first before the measurement is taking with
network analyzer and signal analyzer. The simulation result of CDRA shows
multiple resonant frequencies and provides a wideband of 60.71% after the
techniques mentioned above is applied. This proposed work has operating
frequencies in the range of 11 GHz to 22GHz. Then, the measurement of this CDRA
feed for parabolic antenna is being done. A few parameters are taken into
consideration. The experiment is carried out by comparing the proposed work with
existing antenna which operated at 8.2GHz to 12.4GHz.
xiv
The results show that the gain of conventional antenna is better than the proposed
antenna. If they be compared at 11.7 GHz the gain of conventional antenna is
reported to be 7.6dB while the proposed work is at 9.2dB. |
| first_indexed | 2025-11-15T17:36:52Z |
| format | Thesis |
| id | usm-39581 |
| institution | Universiti Sains Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T17:36:52Z |
| publishDate | 2017 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | usm-395812019-04-12T05:25:05Z http://eprints.usm.my/39581/ Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna Mohammad Amin, Nabila Husna TK1-9971 Electrical engineering. Electronics. Nuclear engineering In conjunction with future development of technologies, current wireless systems available have not kept pace. The great interest in wideband systems is because the needed of high data rate wireless transmission and a wireless connectivity for longer range applications. With the latest technology, the microwave radio link device become smaller and cheaper, therefore, require an antenna which is not only small in size and reasonable price. This can be only achieved by using parabolic antenna. The typical parabolic antenna are using solid aluminium dish reflector and the gain is depending on the size of the reflector. Based on previous research a few techniques on enhancing the bandwidth such as using stacked DRA with microstrip line feed are applied in this works. This thesis describes the development of cylindrical dielectric resonator antenna fed for parabolic antenna. The implementation of stacked DRA, aperture coupling and the perforated DRA are shown in this research. The simulation is being done in CST microwave at first before the measurement is taking with network analyzer and signal analyzer. The simulation result of CDRA shows multiple resonant frequencies and provides a wideband of 60.71% after the techniques mentioned above is applied. This proposed work has operating frequencies in the range of 11 GHz to 22GHz. Then, the measurement of this CDRA feed for parabolic antenna is being done. A few parameters are taken into consideration. The experiment is carried out by comparing the proposed work with existing antenna which operated at 8.2GHz to 12.4GHz. xiv The results show that the gain of conventional antenna is better than the proposed antenna. If they be compared at 11.7 GHz the gain of conventional antenna is reported to be 7.6dB while the proposed work is at 9.2dB. 2017 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/39581/1/NABILA_HUSNA_BT_MOHAMMAD_AMIN_24_Pages.pdf Mohammad Amin, Nabila Husna (2017) Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna. Masters thesis, Universiti Sains Malaysia. |
| spellingShingle | TK1-9971 Electrical engineering. Electronics. Nuclear engineering Mohammad Amin, Nabila Husna Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title | Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title_full | Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title_fullStr | Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title_full_unstemmed | Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title_short | Design Of Fiberglass / Aluminium Composite Dielectric Feed For Wideband Parabolic Antenna |
| title_sort | design of fiberglass / aluminium composite dielectric feed for wideband parabolic antenna |
| topic | TK1-9971 Electrical engineering. Electronics. Nuclear engineering |
| url | http://eprints.usm.my/39581/ http://eprints.usm.my/39581/1/NABILA_HUSNA_BT_MOHAMMAD_AMIN_24_Pages.pdf |