Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.

Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelompok yang bermakna. Pengelompokan digunakan sebagai teknik penyelesaian di dalam pelbagai bidang dengan membahagikan dan mengstruktur semula data yan...

Full description

Bibliographic Details
Main Author: Abubaker, Ahmad Asad
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/38568/
http://eprints.usm.my/38568/1/Automatic_multi-objective_clustering_algorithm_using_hybrid_particle_swarm_optimization_with_simulated_annealing_by_Ahmad_Asad_Abubaker..pdf
_version_ 1848878506416537600
author Abubaker, Ahmad Asad
author_facet Abubaker, Ahmad Asad
author_sort Abubaker, Ahmad Asad
building USM Institutional Repository
collection Online Access
description Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelompok yang bermakna. Pengelompokan digunakan sebagai teknik penyelesaian di dalam pelbagai bidang dengan membahagikan dan mengstruktur semula data yang besar dan kompleks supaya menjadi lebih bererti justru mengubahnya kepada maklumat yang berguna. Clustering is a data mining technique. In the field of unsupervised datasets, the task of clustering is by grouping the dataset into meaningful clusters. Clustering is used as a data solution technique in various fields to divide and restructure the large and complex data to become more significant thus transform them into useful information.
first_indexed 2025-11-15T17:32:25Z
format Thesis
id usm-38568
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:32:25Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling usm-385682019-04-12T05:25:08Z http://eprints.usm.my/38568/ Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing. Abubaker, Ahmad Asad QA1 Mathematics (General) Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelompok yang bermakna. Pengelompokan digunakan sebagai teknik penyelesaian di dalam pelbagai bidang dengan membahagikan dan mengstruktur semula data yang besar dan kompleks supaya menjadi lebih bererti justru mengubahnya kepada maklumat yang berguna. Clustering is a data mining technique. In the field of unsupervised datasets, the task of clustering is by grouping the dataset into meaningful clusters. Clustering is used as a data solution technique in various fields to divide and restructure the large and complex data to become more significant thus transform them into useful information. 2016-12 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/38568/1/Automatic_multi-objective_clustering_algorithm_using_hybrid_particle_swarm_optimization_with_simulated_annealing_by_Ahmad_Asad_Abubaker..pdf Abubaker, Ahmad Asad (2016) Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing. PhD thesis, Universiti Sains Malaysia.
spellingShingle QA1 Mathematics (General)
Abubaker, Ahmad Asad
Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title_full Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title_fullStr Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title_full_unstemmed Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title_short Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
title_sort automatic multi-objective clustering algorithm using hybrid particle swarm optimization with simulated annealing.
topic QA1 Mathematics (General)
url http://eprints.usm.my/38568/
http://eprints.usm.my/38568/1/Automatic_multi-objective_clustering_algorithm_using_hybrid_particle_swarm_optimization_with_simulated_annealing_by_Ahmad_Asad_Abubaker..pdf