An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification

Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-...

Full description

Bibliographic Details
Main Author: Kadhim, Ammar Ismael
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/31479/
http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf
_version_ 1848876581584371712
author Kadhim, Ammar Ismael
author_facet Kadhim, Ammar Ismael
author_sort Kadhim, Ammar Ismael
building USM Institutional Repository
collection Online Access
description Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-frekuensi dokumen songsang (TF-IDF) tradisional menghasilkan pengenalan kategori yang terlalu banyak untuk sesuatu dokumen. Dalam usaha pengelasan pula, kaedah k-jiran terdekat (k-NN) sedia ada dengan jarak Euclid dan skor keserupaan kosinus menghasilkan julat varians yang besar dalam prestasinya. Untuk menangani isu ini, kajian ini mengelaskan topik untuk teks pendek dan panjang dengan menggunakan pendekatan baharu untuk tahap-tahap utama pengelasan teks (iaitu penyarian sifat dan pengelasan teks). Kajian ini juga memperkenalkan TD-IDF dengan logaritma dan k-NN dengan skor keserupaan kosinus yang baharu untuk penyarian sifat dan pengelasan masing-masing. Lagipun, faktor yang memberi kesan terhadap prestasi pembelajaran mesin berselia juga dikenalpasti. Automatic text classification is important because of the increased availability of digital documents and therefore the need to organize them. The current state-of-the-art statistical modeling approaches do not provide sufficient useful information on the topics for each feature and category. Furthermore, feature extraction using traditional term frequency-inverse document frequency (TF-IDF) results in the identification of too many categories for a particular document. In terms of classification, current k-NN approaches with Euclidean distance and cosine similarity score produce a wide range of variance in performance. To address these issues, this study classifies topics for short and long texts using a new method for the main stage (i.e., feature extraction and text classification). The study also introduces TF-IDF with logarithm and k-NN with a new cosine similarity score for feature extraction and classification, respectively.
first_indexed 2025-11-15T17:01:49Z
format Thesis
id usm-31479
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:01:49Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling usm-314792019-04-12T05:25:22Z http://eprints.usm.my/31479/ An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification Kadhim, Ammar Ismael QA75.5-76.95 Electronic computers. Computer science Pengelasan teks automatik adalah penting kerana peningkatan bilangan dokumen digital dan oleh itu ia perlu diurus. Kaedah pemodelan statistik terkini tidak memberi maklumat berguna yang mencukupi tentang topik untuk setiap ciri dan kategori. Tambahan pula, penyarian sifat menggunakan frekuensi kata-frekuensi dokumen songsang (TF-IDF) tradisional menghasilkan pengenalan kategori yang terlalu banyak untuk sesuatu dokumen. Dalam usaha pengelasan pula, kaedah k-jiran terdekat (k-NN) sedia ada dengan jarak Euclid dan skor keserupaan kosinus menghasilkan julat varians yang besar dalam prestasinya. Untuk menangani isu ini, kajian ini mengelaskan topik untuk teks pendek dan panjang dengan menggunakan pendekatan baharu untuk tahap-tahap utama pengelasan teks (iaitu penyarian sifat dan pengelasan teks). Kajian ini juga memperkenalkan TD-IDF dengan logaritma dan k-NN dengan skor keserupaan kosinus yang baharu untuk penyarian sifat dan pengelasan masing-masing. Lagipun, faktor yang memberi kesan terhadap prestasi pembelajaran mesin berselia juga dikenalpasti. Automatic text classification is important because of the increased availability of digital documents and therefore the need to organize them. The current state-of-the-art statistical modeling approaches do not provide sufficient useful information on the topics for each feature and category. Furthermore, feature extraction using traditional term frequency-inverse document frequency (TF-IDF) results in the identification of too many categories for a particular document. In terms of classification, current k-NN approaches with Euclidean distance and cosine similarity score produce a wide range of variance in performance. To address these issues, this study classifies topics for short and long texts using a new method for the main stage (i.e., feature extraction and text classification). The study also introduces TF-IDF with logarithm and k-NN with a new cosine similarity score for feature extraction and classification, respectively. 2016-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf Kadhim, Ammar Ismael (2016) An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification. PhD thesis, Universiti Sains Malaysia.
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Kadhim, Ammar Ismael
An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_full An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_fullStr An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_full_unstemmed An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_short An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
title_sort improved k-nearest neighbors approach using modified term weighting and similarity coefficient for text classification
topic QA75.5-76.95 Electronic computers. Computer science
url http://eprints.usm.my/31479/
http://eprints.usm.my/31479/1/AMMAR_ISMAEL_KADHIM_24.pdf