Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination

Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U...

Full description

Bibliographic Details
Main Author: Supramaniam, Shamani
Format: Thesis
Language:English
Published: 2009
Subjects:
Online Access:http://eprints.usm.my/31162/
http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf
_version_ 1848876494957314048
author Supramaniam, Shamani
author_facet Supramaniam, Shamani
author_sort Supramaniam, Shamani
building USM Institutional Repository
collection Online Access
description Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l
first_indexed 2025-11-15T17:00:27Z
format Thesis
id usm-31162
institution Universiti Sains Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T17:00:27Z
publishDate 2009
recordtype eprints
repository_type Digital Repository
spelling usm-311622016-11-21T08:06:39Z http://eprints.usm.my/31162/ Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination Supramaniam, Shamani QA1 Mathematics (General) Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l 2009-07 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf Supramaniam, Shamani (2009) Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination. Masters thesis, Universiti Sains Malaysia.
spellingShingle QA1 Mathematics (General)
Supramaniam, Shamani
Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_full Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_fullStr Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_full_unstemmed Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_short Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
title_sort convolution and coefficient problems for multivalent functions defined by subordination
topic QA1 Mathematics (General)
url http://eprints.usm.my/31162/
http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf