Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination
Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2009
|
| Subjects: | |
| Online Access: | http://eprints.usm.my/31162/ http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf |
| _version_ | 1848876494957314048 |
|---|---|
| author | Supramaniam, Shamani |
| author_facet | Supramaniam, Shamani |
| author_sort | Supramaniam, Shamani |
| building | USM Institutional Repository |
| collection | Online Access |
| description | Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam
C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis
1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A
mempunyai siri Taylor berbentuk
00
l(z) = z + L anzn, (z E U).
n=2
Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk
00
1(z) = zP + L anzn, (z E U)
n=p+1
dengan A := AI.
Pertimbangkan dua fungsi
dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9
berbentuk
00
(J * g)(z) = zP + L anbnzn.
n=p+1
Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk
in C and H(U) be the class of analytic functions defined in U. Also let A denote
the class of all functions I analytic in the open unit disk U := {z E C : Izl < I},
and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series
expansion of the form
00
I(z) = z + ~ (LnZn (z E U).
n=2
Let Ap (p EN) be the class of all analytic functions of the form
00
fez) = zP + ~ (LnZn
n=p+l
with A:= AI.
Consider two functions
in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9
defined by
00
(J * g)(z) = zP + ~ anbnzn
.
"=p+l |
| first_indexed | 2025-11-15T17:00:27Z |
| format | Thesis |
| id | usm-31162 |
| institution | Universiti Sains Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T17:00:27Z |
| publishDate | 2009 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | usm-311622016-11-21T08:06:39Z http://eprints.usm.my/31162/ Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination Supramaniam, Shamani QA1 Mathematics (General) Andaikan C satah kompleks, U = {z E C : Izl < I} cakera unit terbuka dalam C dan H(U) kelas fungsi analisis dalam U. Andaikan juga A kelas fungsi analisis 1 dalam U yang ternormalkan dengan 1(0) = 0 dan 1'(0) = 1. Fungsi 1 E A mempunyai siri Taylor berbentuk 00 l(z) = z + L anzn, (z E U). n=2 Andaikan Ap (p EN) kelas fungsi analisis 1 berbentuk 00 1(z) = zP + L anzn, (z E U) n=p+1 dengan A := AI. Pertimbangkan dua fungsi dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk 1 dan 9 ialah fungsi 1 * 9 berbentuk 00 (J * g)(z) = zP + L anbnzn. n=p+1 Let C be the complex plane and U := {z E C : Izl < I} be the open unit disk in C and H(U) be the class of analytic functions defined in U. Also let A denote the class of all functions I analytic in the open unit disk U := {z E C : Izl < I}, and normalized by 1(0) = 0, and 1'(0) = 1. A function I E A has the Taylor series expansion of the form 00 I(z) = z + ~ (LnZn (z E U). n=2 Let Ap (p EN) be the class of all analytic functions of the form 00 fez) = zP + ~ (LnZn n=p+l with A:= AI. Consider two functions in Ap. The Hadamard product (or convolution) of I and 9 is the function I * 9 defined by 00 (J * g)(z) = zP + ~ anbnzn . "=p+l 2009-07 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf Supramaniam, Shamani (2009) Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination. Masters thesis, Universiti Sains Malaysia. |
| spellingShingle | QA1 Mathematics (General) Supramaniam, Shamani Convolution And Coefficient Problems For Multivalent Functions Defined By Subordination |
| title | Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
| title_full | Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
| title_fullStr | Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
| title_full_unstemmed | Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
| title_short | Convolution And Coefficient Problems
For Multivalent Functions Defined By
Subordination
|
| title_sort | convolution and coefficient problems
for multivalent functions defined by
subordination |
| topic | QA1 Mathematics (General) |
| url | http://eprints.usm.my/31162/ http://eprints.usm.my/31162/1/SHAMANI_A.P_SUPRAMANIAM.pdf |