Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)

In this century, the development of nano-sized filler from biomass material has become the main focus of industries in achieving their final green composite product for a wide range of applications. From a commercial and environmental point of view, fragmentation and downsizing of waste lignocellulo...

Full description

Bibliographic Details
Main Authors: Alothman, Othman Y., Shaikh, Hamid M., Alshammari, Basheer A., Mohammad Jawaid, .
Format: Article
Published: Springer 2021
Online Access:http://psasir.upm.edu.my/id/eprint/95184/
_version_ 1848862091588403200
author Alothman, Othman Y.
Shaikh, Hamid M.
Alshammari, Basheer A.
Mohammad Jawaid, .
author_facet Alothman, Othman Y.
Shaikh, Hamid M.
Alshammari, Basheer A.
Mohammad Jawaid, .
author_sort Alothman, Othman Y.
building UPM Institutional Repository
collection Online Access
description In this century, the development of nano-sized filler from biomass material has become the main focus of industries in achieving their final green composite product for a wide range of applications. From a commercial and environmental point of view, fragmentation and downsizing of waste lignocellulosic fibers without chemical treatments into small size particles is a viable option. In this study, an attempt was made to produce nano-sized lignocellulosic fillers from date palm micro fibers via mechanical ball milling process at intense 99 cycles run (equivalent to 25 h). The resultant nanofillers as well as the microfibers were characterized in details by various analytical techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), particle size analysis (PSA), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to assess their structure—property relationship. From microscopy examination, the nanofillers showed a heterogeneous mix of irregular shaped particles, and while having a size ranging of 30–110 nm in width and 1–10 mm length dimensions. Also, the crystallography analysis revealed the crystallinity had mildly declined from microfibers (71.8%) to nanofiller (68.9%) due to amorphization effect. As for thermal analysis, the nanofillers exhibited high heat resistance at 260.8 °C decomposition temperature. Furthermore, the nanofillers also had stable thermo-changing behavior by presenting low heat enthalpy change (40.15 J/g) in its endothermic reaction for breaking organic bonds. The thermal results suggest its suitability for composite fabrication process at high temperature. Thus, the produced nanofillers can be used as a low cost reinforcing agent in the future for versatile polymer-based composite systems.
first_indexed 2025-11-15T13:11:31Z
format Article
id upm-95184
institution Universiti Putra Malaysia
institution_category Local University
last_indexed 2025-11-15T13:11:31Z
publishDate 2021
publisher Springer
recordtype eprints
repository_type Digital Repository
spelling upm-951842023-04-06T04:30:47Z http://psasir.upm.edu.my/id/eprint/95184/ Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.) Alothman, Othman Y. Shaikh, Hamid M. Alshammari, Basheer A. Mohammad Jawaid, . In this century, the development of nano-sized filler from biomass material has become the main focus of industries in achieving their final green composite product for a wide range of applications. From a commercial and environmental point of view, fragmentation and downsizing of waste lignocellulosic fibers without chemical treatments into small size particles is a viable option. In this study, an attempt was made to produce nano-sized lignocellulosic fillers from date palm micro fibers via mechanical ball milling process at intense 99 cycles run (equivalent to 25 h). The resultant nanofillers as well as the microfibers were characterized in details by various analytical techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), particle size analysis (PSA), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to assess their structure—property relationship. From microscopy examination, the nanofillers showed a heterogeneous mix of irregular shaped particles, and while having a size ranging of 30–110 nm in width and 1–10 mm length dimensions. Also, the crystallography analysis revealed the crystallinity had mildly declined from microfibers (71.8%) to nanofiller (68.9%) due to amorphization effect. As for thermal analysis, the nanofillers exhibited high heat resistance at 260.8 °C decomposition temperature. Furthermore, the nanofillers also had stable thermo-changing behavior by presenting low heat enthalpy change (40.15 J/g) in its endothermic reaction for breaking organic bonds. The thermal results suggest its suitability for composite fabrication process at high temperature. Thus, the produced nanofillers can be used as a low cost reinforcing agent in the future for versatile polymer-based composite systems. Springer 2021-07-05 Article PeerReviewed Alothman, Othman Y. and Shaikh, Hamid M. and Alshammari, Basheer A. and Mohammad Jawaid, . (2021) Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.). Journal of Polymers and the Environment, 30 (2). pp. 622-630. ISSN 1566-2543; ESSN:1572-8919 https://link.springer.com/article/10.1007/s10924-021-02224-0 10.1007/s10924-021-02224-0
spellingShingle Alothman, Othman Y.
Shaikh, Hamid M.
Alshammari, Basheer A.
Mohammad Jawaid, .
Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title_full Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title_fullStr Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title_full_unstemmed Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title_short Structural, morphological and thermal properties of nano Filler produced from date palm-based micro (fibers phoenix dactylifera L.)
title_sort structural, morphological and thermal properties of nano filler produced from date palm-based micro (fibers phoenix dactylifera l.)
url http://psasir.upm.edu.my/id/eprint/95184/
http://psasir.upm.edu.my/id/eprint/95184/
http://psasir.upm.edu.my/id/eprint/95184/