Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model
Gage Repeatability and Reproducibility (R&R) is the popular method for assessing the capability of a measurement system. Appropriate action can be taken up to improve the quality of the data if measurement system shows incapable. Identification of outliers in measurement data related to manufact...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Institute for Mathematical Research, Universiti Putra Malaysia
2021
|
| Online Access: | http://psasir.upm.edu.my/id/eprint/94482/ http://psasir.upm.edu.my/id/eprint/94482/1/Outlier%20detection%20method.pdf |
| _version_ | 1848862009902235648 |
|---|---|
| author | Saupi, Ahmad Azizi Midi, Habshah |
| author_facet | Saupi, Ahmad Azizi Midi, Habshah |
| author_sort | Saupi, Ahmad Azizi |
| building | UPM Institutional Repository |
| collection | Online Access |
| description | Gage Repeatability and Reproducibility (R&R) is the popular method for assessing the capability of a measurement system. Appropriate action can be taken up to improve the quality of the data if measurement system shows incapable. Identification of outliers in measurement data related to manufacturing process is very important since it can affect the efficiency of the measurement system, which lead to misleading prediction and conclusion. Many work on the identification of outliers in linear regression has been explored. However, not much work is devoted to outlier detection method for measurement system data. It is now evident that the classical standardized residual method failed to correctly identify outliers because it is computed based
on sample mean. Hence, we propose a new method, which we call robust standardized residual based on median as an alternative to the existing method to rectify the outlier in crossed Gage R&R. The performance of our proposed method is validate through simulation and real data. The results show that our proposed method outperformed the classical method in terms of successfully detect the outliers, without having masking and smaller swamping effects. |
| first_indexed | 2025-11-15T13:10:13Z |
| format | Article |
| id | upm-94482 |
| institution | Universiti Putra Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T13:10:13Z |
| publishDate | 2021 |
| publisher | Institute for Mathematical Research, Universiti Putra Malaysia |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | upm-944822022-11-29T01:59:17Z http://psasir.upm.edu.my/id/eprint/94482/ Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model Saupi, Ahmad Azizi Midi, Habshah Gage Repeatability and Reproducibility (R&R) is the popular method for assessing the capability of a measurement system. Appropriate action can be taken up to improve the quality of the data if measurement system shows incapable. Identification of outliers in measurement data related to manufacturing process is very important since it can affect the efficiency of the measurement system, which lead to misleading prediction and conclusion. Many work on the identification of outliers in linear regression has been explored. However, not much work is devoted to outlier detection method for measurement system data. It is now evident that the classical standardized residual method failed to correctly identify outliers because it is computed based on sample mean. Hence, we propose a new method, which we call robust standardized residual based on median as an alternative to the existing method to rectify the outlier in crossed Gage R&R. The performance of our proposed method is validate through simulation and real data. The results show that our proposed method outperformed the classical method in terms of successfully detect the outliers, without having masking and smaller swamping effects. Institute for Mathematical Research, Universiti Putra Malaysia 2021-10 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/94482/1/Outlier%20detection%20method.pdf Saupi, Ahmad Azizi and Midi, Habshah (2021) Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model. Malaysian Journal of Mathematical Sciences, 15 (3). 333 - 345. ISSN 1823-8343; ESSN: 2289-750X https://mjms.upm.edu.my/lihatmakalah.php?kod=2021/September/15/3/333-345 |
| spellingShingle | Saupi, Ahmad Azizi Midi, Habshah Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title | Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title_full | Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title_fullStr | Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title_full_unstemmed | Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title_short | Outlier detection method in crossed Gage Repeatability and Reproducibility (R&R) random effect model |
| title_sort | outlier detection method in crossed gage repeatability and reproducibility (r&r) random effect model |
| url | http://psasir.upm.edu.my/id/eprint/94482/ http://psasir.upm.edu.my/id/eprint/94482/ http://psasir.upm.edu.my/id/eprint/94482/1/Outlier%20detection%20method.pdf |