Packing 1-plane Hamiltonian cycles in complete geometric graphs
Counting the number of Hamiltonian cycles that are contained in a geometric graph is #P-complete even if the graph is known to be planar [15]. A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We co...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Faculty of Sciences and Mathematics, University of Nis
2019
|
| Online Access: | http://psasir.upm.edu.my/id/eprint/81605/ http://psasir.upm.edu.my/id/eprint/81605/1/PLANE.pdf |
| Summary: | Counting the number of Hamiltonian cycles that are contained in a geometric graph is #P-complete even if the graph is known to be planar [15]. A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We consider the following question: For any set P of n points in the plane, how many 1-plane Hamiltonian cycles can be packed into a complete geometric graph Kn? We investigate the problem by taking two different situations of P, namely, when P is in convex position, wheel configurations position. For points in general position we prove the lower bound of k − 1 where n = 2k + h and 0 ≤ h < 2k. In all of the situations, we investigate the constructions of the graphs obtained. |
|---|