Multispectral remote sensing for nitrogen fertilizer management in oil palm

Environmental concerns are growing about excessive applying nitrogen (N) fertilizers specially in oil palm. Some conventional methods which are used to assess the amount of nutrient in oil palm are time consuming, expensive, and involve frond destruction. Remote sensing as a non-destructive, a...

Full description

Bibliographic Details
Main Author: Khouzani, Mohammad Yadegari
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/67916/
http://psasir.upm.edu.my/id/eprint/67916/1/FK%202018%2050.pdf
_version_ 1848855980659441664
author Khouzani, Mohammad Yadegari
author_facet Khouzani, Mohammad Yadegari
author_sort Khouzani, Mohammad Yadegari
building UPM Institutional Repository
collection Online Access
description Environmental concerns are growing about excessive applying nitrogen (N) fertilizers specially in oil palm. Some conventional methods which are used to assess the amount of nutrient in oil palm are time consuming, expensive, and involve frond destruction. Remote sensing as a non-destructive, affordable and efficient method are widely used to detect the concentration of chlorophyll (Chl) from canopy plants using several Vegetation Indices (VIs) because there is a strong relative between the concentration of N in the leaves and canopy Chl content. The objectives of this research were (i) to evaluate and compare the performance of various Vegetation Indices (VIs) for measuring N status in oil palm canopy using SPOT7 imagery (ii) to develop a regression formula that can predict the N content using satellite data (iii) to assess the regression formula performance on testing datasets by testing the correlation between the predicted and measured N contents. Spot 7 was acquired in a 6 ha oil palm planted area in Pahang, Malaysia. To predict N content 28 VIs based on spectral range of SPOT 7 satellite image were evaluated. Several regression models were applied to determine the highest correlation between VIs and actual N content from leaf sampling. MSAVI generated the highest correlation (R2 = 0.93). MTVI1 and Triangular VI had the highest second and third correlations with N content (R2= 0.926 and 0.923 respectively). The accuracy assessment of developed model was evaluated using several statistical parameters such as Independent T-test, and p-value. The accuracy assessment of developed model was more than 77%.
first_indexed 2025-11-15T11:34:23Z
format Thesis
id upm-67916
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T11:34:23Z
publishDate 2017
recordtype eprints
repository_type Digital Repository
spelling upm-679162025-05-30T01:18:08Z http://psasir.upm.edu.my/id/eprint/67916/ Multispectral remote sensing for nitrogen fertilizer management in oil palm Khouzani, Mohammad Yadegari Environmental concerns are growing about excessive applying nitrogen (N) fertilizers specially in oil palm. Some conventional methods which are used to assess the amount of nutrient in oil palm are time consuming, expensive, and involve frond destruction. Remote sensing as a non-destructive, affordable and efficient method are widely used to detect the concentration of chlorophyll (Chl) from canopy plants using several Vegetation Indices (VIs) because there is a strong relative between the concentration of N in the leaves and canopy Chl content. The objectives of this research were (i) to evaluate and compare the performance of various Vegetation Indices (VIs) for measuring N status in oil palm canopy using SPOT7 imagery (ii) to develop a regression formula that can predict the N content using satellite data (iii) to assess the regression formula performance on testing datasets by testing the correlation between the predicted and measured N contents. Spot 7 was acquired in a 6 ha oil palm planted area in Pahang, Malaysia. To predict N content 28 VIs based on spectral range of SPOT 7 satellite image were evaluated. Several regression models were applied to determine the highest correlation between VIs and actual N content from leaf sampling. MSAVI generated the highest correlation (R2 = 0.93). MTVI1 and Triangular VI had the highest second and third correlations with N content (R2= 0.926 and 0.923 respectively). The accuracy assessment of developed model was evaluated using several statistical parameters such as Independent T-test, and p-value. The accuracy assessment of developed model was more than 77%. 2017-12 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/67916/1/FK%202018%2050.pdf Khouzani, Mohammad Yadegari (2017) Multispectral remote sensing for nitrogen fertilizer management in oil palm. Masters thesis, Universiti Putra Malaysia. Nitrogen fertilizers Remote sensing Remote-sensing images
spellingShingle Nitrogen fertilizers
Remote sensing
Remote-sensing images
Khouzani, Mohammad Yadegari
Multispectral remote sensing for nitrogen fertilizer management in oil palm
title Multispectral remote sensing for nitrogen fertilizer management in oil palm
title_full Multispectral remote sensing for nitrogen fertilizer management in oil palm
title_fullStr Multispectral remote sensing for nitrogen fertilizer management in oil palm
title_full_unstemmed Multispectral remote sensing for nitrogen fertilizer management in oil palm
title_short Multispectral remote sensing for nitrogen fertilizer management in oil palm
title_sort multispectral remote sensing for nitrogen fertilizer management in oil palm
topic Nitrogen fertilizers
Remote sensing
Remote-sensing images
url http://psasir.upm.edu.my/id/eprint/67916/
http://psasir.upm.edu.my/id/eprint/67916/1/FK%202018%2050.pdf