Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli

Saprophytic filamentous fungi such as Trichoderma sp. are capable of producing three categories of cellulase for cellulose degradation into glucose; endoglucanase, cellobiohydrolase and β-glucosidase. Trichoderma reesei in particular has an extensively studied cellulase enzyme system, establishing i...

Full description

Bibliographic Details
Main Authors: Mohamad Sobri, Mohamad Farhan, Ramli, Norhayati, Abd. Aziz, Suraini, Abu Bakar, Farah Diba
Format: Conference or Workshop Item
Language:English
Published: 2017
Online Access:http://psasir.upm.edu.my/id/eprint/64358/
http://psasir.upm.edu.my/id/eprint/64358/1/BIO%20Poster%20111117%2018.pdf
_version_ 1848854979523117056
author Mohamad Sobri, Mohamad Farhan
Ramli, Norhayati
Abd. Aziz, Suraini
Abu Bakar, Farah Diba
author_facet Mohamad Sobri, Mohamad Farhan
Ramli, Norhayati
Abd. Aziz, Suraini
Abu Bakar, Farah Diba
author_sort Mohamad Sobri, Mohamad Farhan
building UPM Institutional Repository
collection Online Access
description Saprophytic filamentous fungi such as Trichoderma sp. are capable of producing three categories of cellulase for cellulose degradation into glucose; endoglucanase, cellobiohydrolase and β-glucosidase. Trichoderma reesei in particular has an extensively studied cellulase enzyme system, establishing it as a model organism for enzymatic production. Studies on β-glucosidases produced by Trichoderma sp. have elucidated two variants, which have been classified into glycosyl hydrolase families 1 and 3, both including retaining enzymes capable of substrate hydrolysis via double-displacement method with retention of anomeric carbon. Extensive studies on BglI enzyme isolated has been compared and found to have sequence similarity to other known glycosyl hydrolase family 3 β-glucosidases, an enzyme that is cell wall bound or expressed extracellularly, affects rate of reducing sugar formation from cellulase and involved in synthesis of soluble inducer of cellulolytic enzymes. Comparatively, enzyme characterization of the second β-glucosidase, BglII, has been relatively recent. Nevertheless, it has been identified to be expressed intracellularly, has high affinity and catalyzes transglycosylation reactions on cellobiose. Of particular interest, BglII has shown lower sensitivity to glucose inhibition, an appealing character for bioprocess development for efficient lignocellulosic biomass saccharification. As such, using local Trichoderma sp., this study has sought to characterize the BglII gene isolated and following heterologous expression in Escherichia coli, characterize the recombinant enzyme for enzyme activity, glucose tolerance and product synthesis.
first_indexed 2025-11-15T11:18:28Z
format Conference or Workshop Item
id upm-64358
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T11:18:28Z
publishDate 2017
recordtype eprints
repository_type Digital Repository
spelling upm-643582018-07-04T02:38:53Z http://psasir.upm.edu.my/id/eprint/64358/ Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli Mohamad Sobri, Mohamad Farhan Ramli, Norhayati Abd. Aziz, Suraini Abu Bakar, Farah Diba Saprophytic filamentous fungi such as Trichoderma sp. are capable of producing three categories of cellulase for cellulose degradation into glucose; endoglucanase, cellobiohydrolase and β-glucosidase. Trichoderma reesei in particular has an extensively studied cellulase enzyme system, establishing it as a model organism for enzymatic production. Studies on β-glucosidases produced by Trichoderma sp. have elucidated two variants, which have been classified into glycosyl hydrolase families 1 and 3, both including retaining enzymes capable of substrate hydrolysis via double-displacement method with retention of anomeric carbon. Extensive studies on BglI enzyme isolated has been compared and found to have sequence similarity to other known glycosyl hydrolase family 3 β-glucosidases, an enzyme that is cell wall bound or expressed extracellularly, affects rate of reducing sugar formation from cellulase and involved in synthesis of soluble inducer of cellulolytic enzymes. Comparatively, enzyme characterization of the second β-glucosidase, BglII, has been relatively recent. Nevertheless, it has been identified to be expressed intracellularly, has high affinity and catalyzes transglycosylation reactions on cellobiose. Of particular interest, BglII has shown lower sensitivity to glucose inhibition, an appealing character for bioprocess development for efficient lignocellulosic biomass saccharification. As such, using local Trichoderma sp., this study has sought to characterize the BglII gene isolated and following heterologous expression in Escherichia coli, characterize the recombinant enzyme for enzyme activity, glucose tolerance and product synthesis. 2017 Conference or Workshop Item PeerReviewed text en http://psasir.upm.edu.my/id/eprint/64358/1/BIO%20Poster%20111117%2018.pdf Mohamad Sobri, Mohamad Farhan and Ramli, Norhayati and Abd. Aziz, Suraini and Abu Bakar, Farah Diba (2017) Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli. In: 5th International Symposium on Applied Engineering and Sciences (SAES2017), 14-15 Nov. 2017, Universiti Putra Malaysia. (p. 18).
spellingShingle Mohamad Sobri, Mohamad Farhan
Ramli, Norhayati
Abd. Aziz, Suraini
Abu Bakar, Farah Diba
Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title_full Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title_fullStr Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title_full_unstemmed Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title_short Enzymatic characterization of heterologously expressed fungal β-glucosidase BGLII in Escherichia coli
title_sort enzymatic characterization of heterologously expressed fungal β-glucosidase bglii in escherichia coli
url http://psasir.upm.edu.my/id/eprint/64358/
http://psasir.upm.edu.my/id/eprint/64358/1/BIO%20Poster%20111117%2018.pdf