Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication

Cryptography via public key cryptosystems (PKC) has been widely used for providing services such as confality, authentication, integrity and non-repudiation. Other than security, computational efficiency is another major issue of concern. And for PKC, it is largely controlled by either modular expon...

Full description

Bibliographic Details
Main Authors: Noma, Adamu Muhammad, Muhammed, Abdullah, Ahmad Zukarnain, Zuriati, Mohamed, Muhammad Afendee
Format: Article
Language:English
Published: Cogent OA 2017
Online Access:http://psasir.upm.edu.my/id/eprint/62242/
http://psasir.upm.edu.my/id/eprint/62242/1/Iterative%20sliding%20window%20method%20for%20shorter%20number.pdf
_version_ 1848854592191725568
author Noma, Adamu Muhammad
Muhammed, Abdullah
Ahmad Zukarnain, Zuriati
Mohamed, Muhammad Afendee
author_facet Noma, Adamu Muhammad
Muhammed, Abdullah
Ahmad Zukarnain, Zuriati
Mohamed, Muhammad Afendee
author_sort Noma, Adamu Muhammad
building UPM Institutional Repository
collection Online Access
description Cryptography via public key cryptosystems (PKC) has been widely used for providing services such as confality, authentication, integrity and non-repudiation. Other than security, computational efficiency is another major issue of concern. And for PKC, it is largely controlled by either modular exponentiation or scalar multiplication operations such that found in RSA and elliptic curve cryptosystem (ECC), respectively. One approach to address this operational problem is via concept of addition chain (AC), in which the exhaustive single operation involving large integer is reduced into a sequence of operations consisting of simple multiplications or additions. Existing techniques manipulate the representation of integer into binary and m-ary prior performing the series of operations. This paper proposes an iterative variant of sliding window method (SWM) form of m-ary family, for shorter sequence of multiplications corresponding to the modular exponentiation. Thus, it is called an iterative SWM. Moreover, specific for ECC that imposes no extra resource for point negation, the paper proposes an iterative recoded SWM, operating on integers recoded using a modified non-adjacent form (NAF) for speeding up the scalar multiplication. The relative behaviour is also examined, of number of additions in scalar multiplications, with the integers hamming weight. The proposed iterative SWM methods reduce the number of operations by up to 6% than the standard SWM heuristic. They result to even shorter chains of operations than ones returned by many metaheuristic algorithms for the AC.
first_indexed 2025-11-15T11:12:19Z
format Article
id upm-62242
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T11:12:19Z
publishDate 2017
publisher Cogent OA
recordtype eprints
repository_type Digital Repository
spelling upm-622422019-05-21T06:21:36Z http://psasir.upm.edu.my/id/eprint/62242/ Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication Noma, Adamu Muhammad Muhammed, Abdullah Ahmad Zukarnain, Zuriati Mohamed, Muhammad Afendee Cryptography via public key cryptosystems (PKC) has been widely used for providing services such as confality, authentication, integrity and non-repudiation. Other than security, computational efficiency is another major issue of concern. And for PKC, it is largely controlled by either modular exponentiation or scalar multiplication operations such that found in RSA and elliptic curve cryptosystem (ECC), respectively. One approach to address this operational problem is via concept of addition chain (AC), in which the exhaustive single operation involving large integer is reduced into a sequence of operations consisting of simple multiplications or additions. Existing techniques manipulate the representation of integer into binary and m-ary prior performing the series of operations. This paper proposes an iterative variant of sliding window method (SWM) form of m-ary family, for shorter sequence of multiplications corresponding to the modular exponentiation. Thus, it is called an iterative SWM. Moreover, specific for ECC that imposes no extra resource for point negation, the paper proposes an iterative recoded SWM, operating on integers recoded using a modified non-adjacent form (NAF) for speeding up the scalar multiplication. The relative behaviour is also examined, of number of additions in scalar multiplications, with the integers hamming weight. The proposed iterative SWM methods reduce the number of operations by up to 6% than the standard SWM heuristic. They result to even shorter chains of operations than ones returned by many metaheuristic algorithms for the AC. Cogent OA 2017 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/62242/1/Iterative%20sliding%20window%20method%20for%20shorter%20number.pdf Noma, Adamu Muhammad and Muhammed, Abdullah and Ahmad Zukarnain, Zuriati and Mohamed, Muhammad Afendee (2017) Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication. Cogent Engineering, 4 (1). art. no. 1304499. pp. 1-13. ISSN 2331-1916 https://www.tandfonline.com/doi/full/10.1080/23311916.2017.1304499 10.1080/23311916.2017.1304499
spellingShingle Noma, Adamu Muhammad
Muhammed, Abdullah
Ahmad Zukarnain, Zuriati
Mohamed, Muhammad Afendee
Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title_full Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title_fullStr Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title_full_unstemmed Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title_short Iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
title_sort iterative sliding window method for shorter number of operations in modular exponentiation and scalar multiplication
url http://psasir.upm.edu.my/id/eprint/62242/
http://psasir.upm.edu.my/id/eprint/62242/
http://psasir.upm.edu.my/id/eprint/62242/
http://psasir.upm.edu.my/id/eprint/62242/1/Iterative%20sliding%20window%20method%20for%20shorter%20number.pdf