An adaptive localization system using particle swarm optimization in a circular distribution form

Tracking the user location in indoor environment becomes substantial issue in recent research High accuracy and fast convergence are very important issues for a good localization system. One of the techniques that are used in localization systems is particle swarm optimization (PSO). This technique...

Full description

Bibliographic Details
Main Authors: Alhammadi, Abdulraqeb, Hashim, Fazirulhisyam, Fadlee, Mohd, Shami, Tareq M.
Format: Article
Language:English
Published: Penerbit UTM Press 2016
Online Access:http://psasir.upm.edu.my/id/eprint/55007/
http://psasir.upm.edu.my/id/eprint/55007/1/An%20adaptive%20localization%20system%20using%20particle%20swarm%20optimization%20in%20a%20circular%20distribution%20form.pdf
_version_ 1848852690863390720
author Alhammadi, Abdulraqeb
Hashim, Fazirulhisyam
Fadlee, Mohd
Shami, Tareq M.
author_facet Alhammadi, Abdulraqeb
Hashim, Fazirulhisyam
Fadlee, Mohd
Shami, Tareq M.
author_sort Alhammadi, Abdulraqeb
building UPM Institutional Repository
collection Online Access
description Tracking the user location in indoor environment becomes substantial issue in recent research High accuracy and fast convergence are very important issues for a good localization system. One of the techniques that are used in localization systems is particle swarm optimization (PSO). This technique is a stochastic optimization based on the movement and velocity of particles. In this paper, we introduce an algorithm using PSO for indoor localization system. The proposed algorithm uses PSO to generate several particles that have circular distribution around one access point (AP). The PSO generates particles where the distance from each particle to the AP is the same distance from the AP to the target. The particle which achieves correct distances (distances from each AP to target) is selected as the target. Four PSO variants, namely standard PSO (SPSO), linearly decreasing inertia weight PSO (LDIW PSO), self-organizing hierarchical PSO with time acceleration coefficients (HPSO-TVAC), and constriction factor PSO (CFPSO) are used to find the minimum distance error. The simulation results show the proposed method using HPSO-TVAC variant achieves very low distance error of 0.19 meter.
first_indexed 2025-11-15T10:42:06Z
format Article
id upm-55007
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T10:42:06Z
publishDate 2016
publisher Penerbit UTM Press
recordtype eprints
repository_type Digital Repository
spelling upm-550072018-07-12T10:30:13Z http://psasir.upm.edu.my/id/eprint/55007/ An adaptive localization system using particle swarm optimization in a circular distribution form Alhammadi, Abdulraqeb Hashim, Fazirulhisyam Fadlee, Mohd Shami, Tareq M. Tracking the user location in indoor environment becomes substantial issue in recent research High accuracy and fast convergence are very important issues for a good localization system. One of the techniques that are used in localization systems is particle swarm optimization (PSO). This technique is a stochastic optimization based on the movement and velocity of particles. In this paper, we introduce an algorithm using PSO for indoor localization system. The proposed algorithm uses PSO to generate several particles that have circular distribution around one access point (AP). The PSO generates particles where the distance from each particle to the AP is the same distance from the AP to the target. The particle which achieves correct distances (distances from each AP to target) is selected as the target. Four PSO variants, namely standard PSO (SPSO), linearly decreasing inertia weight PSO (LDIW PSO), self-organizing hierarchical PSO with time acceleration coefficients (HPSO-TVAC), and constriction factor PSO (CFPSO) are used to find the minimum distance error. The simulation results show the proposed method using HPSO-TVAC variant achieves very low distance error of 0.19 meter. Penerbit UTM Press 2016 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/55007/1/An%20adaptive%20localization%20system%20using%20particle%20swarm%20optimization%20in%20a%20circular%20distribution%20form.pdf Alhammadi, Abdulraqeb and Hashim, Fazirulhisyam and Fadlee, Mohd and Shami, Tareq M. (2016) An adaptive localization system using particle swarm optimization in a circular distribution form. Jurnal Teknologi, 78 (9-3). pp. 105-110. ISSN 0127–9696; ESSN: 2180–3722
spellingShingle Alhammadi, Abdulraqeb
Hashim, Fazirulhisyam
Fadlee, Mohd
Shami, Tareq M.
An adaptive localization system using particle swarm optimization in a circular distribution form
title An adaptive localization system using particle swarm optimization in a circular distribution form
title_full An adaptive localization system using particle swarm optimization in a circular distribution form
title_fullStr An adaptive localization system using particle swarm optimization in a circular distribution form
title_full_unstemmed An adaptive localization system using particle swarm optimization in a circular distribution form
title_short An adaptive localization system using particle swarm optimization in a circular distribution form
title_sort adaptive localization system using particle swarm optimization in a circular distribution form
url http://psasir.upm.edu.my/id/eprint/55007/
http://psasir.upm.edu.my/id/eprint/55007/1/An%20adaptive%20localization%20system%20using%20particle%20swarm%20optimization%20in%20a%20circular%20distribution%20form.pdf