Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks

Breast cancer is one of the main causes of women‘s death. Early detection of tumors increases the chances of overcoming this disease. There are several diagnostic methods for detecting tumors, each of which has its own limitations. Recently, Ultra Wideband (UWB) imaging has gained wide acceptance fo...

Full description

Bibliographic Details
Main Author: Alshehri, Saleh Ali
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/42260/
http://psasir.upm.edu.my/id/eprint/42260/1/FK%202011%2071R.pdf
_version_ 1848849915646574592
author Alshehri, Saleh Ali
author_facet Alshehri, Saleh Ali
author_sort Alshehri, Saleh Ali
building UPM Institutional Repository
collection Online Access
description Breast cancer is one of the main causes of women‘s death. Early detection of tumors increases the chances of overcoming this disease. There are several diagnostic methods for detecting tumors, each of which has its own limitations. Recently, Ultra Wideband (UWB) imaging has gained wide acceptance for several good features such as its specificity and lack of ionizing radiation. The confocal method has been the dominant technique in this area based on homogeneous breast tissues and prior knowledge of tissue permittivity. Hence it is impractical and difficult to be implemented clinically. This thesis has focused on development of a complete non-confocal system for breast tumor detection using Neural Network (NN)-based Ultra Wideband (UWB) imaging considering both homogeneous and heterogeneous tissues. The work has been done in two phases: i) Simulation and ii) Experiment. At the simulation stage, a feed-forward NN model was developed to identify the existence, size, and location of tumors in a breast model. Spherical tumors were created and placed at arbitrary locations in a hemispherical breast model using the Computer Simulation Technology (CST) software as an Electromagnetic (EM) simulator. The UWB signals were transmitted and received through breast phantoms. The transmitter and receiver were rotated 360° to detect tumor existence, size, and location in a two-dimensional breast slice using the best-complement rule. A modified Principle Feature Analysis (PFA) method was implemented to reduce the feature vector size and extract the most informative features. We have found that the most informative features occur at the maxima and minima of the signals. The extracted features from the received UWB signals were fed into the NN model to train, validate, and test it first and then to detect the presence, size, and location of possible breast tumors. After simulation proof, a system was developed for experimental tumor detection. The system consisted of commercial UWB transceivers, a developed NN model, and breast phantoms for homogenous and heterogeneous tissues. The breast phantoms and tumor were constructed using available low cost materials and their mixtures with minimal effort. The materials and their mixtures were chosen according to the ratio of the dielectric properties of the breast tissues. A Discrete Cosine Transform (DCT) of the received signals was used to construct the feature vector to train the NN model. Finally, the system was trained to distinguish between malignant and benign tumors. Tumors as small as 0.1 mm and 0.5 mm (diameter) have been successfully detected through simulation and experimental investigation respectively. The tumor existence, size, and location detection rate are about (i) 100%, 93%, and 93.3% and (ii) 100%, 95.8%, and 94.3% through simulation and experimental system respectively. Possible differentiation between malignant and benign tumor was also achieved. The method utilizes the power of neural networks and demonstrates a new direction in this field. This gives assurance of breast tumor detection and the practical usefulness of the developed system in the near future.
first_indexed 2025-11-15T09:57:59Z
format Thesis
id upm-42260
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T09:57:59Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling upm-422602016-03-14T02:15:22Z http://psasir.upm.edu.my/id/eprint/42260/ Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks Alshehri, Saleh Ali Breast cancer is one of the main causes of women‘s death. Early detection of tumors increases the chances of overcoming this disease. There are several diagnostic methods for detecting tumors, each of which has its own limitations. Recently, Ultra Wideband (UWB) imaging has gained wide acceptance for several good features such as its specificity and lack of ionizing radiation. The confocal method has been the dominant technique in this area based on homogeneous breast tissues and prior knowledge of tissue permittivity. Hence it is impractical and difficult to be implemented clinically. This thesis has focused on development of a complete non-confocal system for breast tumor detection using Neural Network (NN)-based Ultra Wideband (UWB) imaging considering both homogeneous and heterogeneous tissues. The work has been done in two phases: i) Simulation and ii) Experiment. At the simulation stage, a feed-forward NN model was developed to identify the existence, size, and location of tumors in a breast model. Spherical tumors were created and placed at arbitrary locations in a hemispherical breast model using the Computer Simulation Technology (CST) software as an Electromagnetic (EM) simulator. The UWB signals were transmitted and received through breast phantoms. The transmitter and receiver were rotated 360° to detect tumor existence, size, and location in a two-dimensional breast slice using the best-complement rule. A modified Principle Feature Analysis (PFA) method was implemented to reduce the feature vector size and extract the most informative features. We have found that the most informative features occur at the maxima and minima of the signals. The extracted features from the received UWB signals were fed into the NN model to train, validate, and test it first and then to detect the presence, size, and location of possible breast tumors. After simulation proof, a system was developed for experimental tumor detection. The system consisted of commercial UWB transceivers, a developed NN model, and breast phantoms for homogenous and heterogeneous tissues. The breast phantoms and tumor were constructed using available low cost materials and their mixtures with minimal effort. The materials and their mixtures were chosen according to the ratio of the dielectric properties of the breast tissues. A Discrete Cosine Transform (DCT) of the received signals was used to construct the feature vector to train the NN model. Finally, the system was trained to distinguish between malignant and benign tumors. Tumors as small as 0.1 mm and 0.5 mm (diameter) have been successfully detected through simulation and experimental investigation respectively. The tumor existence, size, and location detection rate are about (i) 100%, 93%, and 93.3% and (ii) 100%, 95.8%, and 94.3% through simulation and experimental system respectively. Possible differentiation between malignant and benign tumor was also achieved. The method utilizes the power of neural networks and demonstrates a new direction in this field. This gives assurance of breast tumor detection and the practical usefulness of the developed system in the near future. 2011-06 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/42260/1/FK%202011%2071R.pdf Alshehri, Saleh Ali (2011) Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks. PhD thesis, Universiti Putra Malaysia. Ultra-wideband devices Breast - Cancer
spellingShingle Ultra-wideband devices
Breast - Cancer
Alshehri, Saleh Ali
Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title_full Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title_fullStr Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title_full_unstemmed Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title_short Ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
title_sort ultra wideband technique for breast cancer detection using multi-layer feed-forward neural networks
topic Ultra-wideband devices
Breast - Cancer
url http://psasir.upm.edu.my/id/eprint/42260/
http://psasir.upm.edu.my/id/eprint/42260/1/FK%202011%2071R.pdf