A hybrid model of hierarchical clustering and decision tree for rule-based classification of diabetic patients.

Hybrid models in data mining have recently gained attention including in the study of medical research. Various studies in this domain using hybrid models have shown different results. This paper presents the new hybrid model by exploring Agglomerative Hierarchical Clustering and Decision Tree Class...

Full description

Bibliographic Details
Main Authors: Ibrahim, Norul Hidayah, Mustapha, Aida, Rosli, Rozilah, Helmee, Nurdhiya Hazwani
Format: Article
Language:English
English
Published: Engg Journals Publications 2013
Online Access:http://psasir.upm.edu.my/id/eprint/30685/
http://psasir.upm.edu.my/id/eprint/30685/1/A%20hybrid%20model%20of%20hierarchical%20clustering%20and%20decision%20tree%20for%20rule.pdf
Description
Summary:Hybrid models in data mining have recently gained attention including in the study of medical research. Various studies in this domain using hybrid models have shown different results. This paper presents the new hybrid model by exploring Agglomerative Hierarchical Clustering and Decision Tree Classifier on Pima Indians Diabetes dataset. The experiments compared performance accuracy of the Decision Tree Classifier against the same classifier augmented with Hierarchical Clustering. Results showed that the hybrid model achieved higher accuracy with 80.8% as compared to 76.9% of the standard model. This is a promising result for adoption of hierarchical clustering in a rule-based classifier.