Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras
This talk concerns the classification problem of finite dimensional filiform Leibniz algebras. We suggest an invariant approach to the problem. It is well known that the class of complex filiform Leibniz algebras consists of three subclasses. One of these classes contains the class of filiform Lie...
| Main Authors: | , |
|---|---|
| Format: | Conference or Workshop Item |
| Language: | English English |
| Published: |
2011
|
| Subjects: | |
| Online Access: | http://psasir.upm.edu.my/id/eprint/18147/ http://psasir.upm.edu.my/id/eprint/18147/1/ID%2018147.docx |
| _version_ | 1848843432217280512 |
|---|---|
| author | Rakhimov, I. S. Atan, K. A. M. |
| author_facet | Rakhimov, I. S. Atan, K. A. M. |
| author_sort | Rakhimov, I. S. |
| building | UPM Institutional Repository |
| collection | Online Access |
| description | This talk concerns the classification problem of finite dimensional filiform Leibniz algebras. We suggest an invariant approach to the problem. It is well known that the class of complex filiform Leibniz algebras consists of
three subclasses. One of these classes contains the class of filiform Lie algebras. For each class we give isomorphism criteria and find orbit functions. Then we apply this approach to classify the algebras in low dimensions cases. Classifying the filiform Leibniz algebras we inspect and reconcile the classification lists of filiform Lie algebras given before by Gomez, J.R., Jimenez-Merchan, A., Khakimdjanov, Y. in Journal of Pure and Applied Algebra, 130, (1998), 133–158. |
| first_indexed | 2025-11-15T08:14:56Z |
| format | Conference or Workshop Item |
| id | upm-18147 |
| institution | Universiti Putra Malaysia |
| institution_category | Local University |
| language | English English |
| last_indexed | 2025-11-15T08:14:56Z |
| publishDate | 2011 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | upm-181472013-12-10T07:55:19Z http://psasir.upm.edu.my/id/eprint/18147/ Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras Rakhimov, I. S. Atan, K. A. M. This talk concerns the classification problem of finite dimensional filiform Leibniz algebras. We suggest an invariant approach to the problem. It is well known that the class of complex filiform Leibniz algebras consists of three subclasses. One of these classes contains the class of filiform Lie algebras. For each class we give isomorphism criteria and find orbit functions. Then we apply this approach to classify the algebras in low dimensions cases. Classifying the filiform Leibniz algebras we inspect and reconcile the classification lists of filiform Lie algebras given before by Gomez, J.R., Jimenez-Merchan, A., Khakimdjanov, Y. in Journal of Pure and Applied Algebra, 130, (1998), 133–158. 2011 Conference or Workshop Item NonPeerReviewed application/msword en http://psasir.upm.edu.my/id/eprint/18147/1/ID%2018147.docx Rakhimov, I. S. and Atan, K. A. M. (2011) Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras. In: International Conference on Ring Theory, 14-18 July 2011, Rusia. . Isomorphisms (Mathematics) English |
| spellingShingle | Isomorphisms (Mathematics) Rakhimov, I. S. Atan, K. A. M. Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title | Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title_full | Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title_fullStr | Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title_full_unstemmed | Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title_short | Isomorphism classes and invariants of finite dimensional filiform Leibniz algebras |
| title_sort | isomorphism classes and invariants of finite dimensional filiform leibniz algebras |
| topic | Isomorphisms (Mathematics) |
| url | http://psasir.upm.edu.my/id/eprint/18147/ http://psasir.upm.edu.my/id/eprint/18147/1/ID%2018147.docx |