Numerical evaluation for Cauchy type singular integrals on the interval.

The singular integral (SI) with the Cauchy kernel is considered. New quadrature formulas (QFs) based on the modification of discrete vortex method to approximate SI are constructed. Convergence of QFs and error bounds are shown in the classes of functions Hα([−1,1])Hα([−1,1]) and C1([−1,1])C1([−1,1]...

Full description

Bibliographic Details
Main Authors: Eshkuvatov, Zainiddin K., Nik Long, Nik Mohd Asri, Mahiub, Mohammad Abdulkawi
Format: Article
Language:English
English
Published: Elsevier 2010
Online Access:http://psasir.upm.edu.my/id/eprint/15857/
http://psasir.upm.edu.my/id/eprint/15857/1/Numerical%20evaluation%20for%20Cauchy%20type%20singular%20integrals%20on%20the%20interval.pdf
_version_ 1848842796784418816
author Eshkuvatov, Zainiddin K.
Nik Long, Nik Mohd Asri
Mahiub, Mohammad Abdulkawi
author_facet Eshkuvatov, Zainiddin K.
Nik Long, Nik Mohd Asri
Mahiub, Mohammad Abdulkawi
author_sort Eshkuvatov, Zainiddin K.
building UPM Institutional Repository
collection Online Access
description The singular integral (SI) with the Cauchy kernel is considered. New quadrature formulas (QFs) based on the modification of discrete vortex method to approximate SI are constructed. Convergence of QFs and error bounds are shown in the classes of functions Hα([−1,1])Hα([−1,1]) and C1([−1,1])C1([−1,1]). Numerical examples are shown to validate the QFs constructed.
first_indexed 2025-11-15T08:04:50Z
format Article
id upm-15857
institution Universiti Putra Malaysia
institution_category Local University
language English
English
last_indexed 2025-11-15T08:04:50Z
publishDate 2010
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling upm-158572015-09-10T03:03:12Z http://psasir.upm.edu.my/id/eprint/15857/ Numerical evaluation for Cauchy type singular integrals on the interval. Eshkuvatov, Zainiddin K. Nik Long, Nik Mohd Asri Mahiub, Mohammad Abdulkawi The singular integral (SI) with the Cauchy kernel is considered. New quadrature formulas (QFs) based on the modification of discrete vortex method to approximate SI are constructed. Convergence of QFs and error bounds are shown in the classes of functions Hα([−1,1])Hα([−1,1]) and C1([−1,1])C1([−1,1]). Numerical examples are shown to validate the QFs constructed. Elsevier 2010-02-15 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/15857/1/Numerical%20evaluation%20for%20Cauchy%20type%20singular%20integrals%20on%20the%20interval.pdf Eshkuvatov, Zainiddin K. and Nik Long, Nik Mohd Asri and Mahiub, Mohammad Abdulkawi (2010) Numerical evaluation for Cauchy type singular integrals on the interval. Journal of Computational and Applied Mathematics, 233 (8). pp. 1995-2001. ISSN 0377-0427 10.1016/j.cam.2009.09.034 English
spellingShingle Eshkuvatov, Zainiddin K.
Nik Long, Nik Mohd Asri
Mahiub, Mohammad Abdulkawi
Numerical evaluation for Cauchy type singular integrals on the interval.
title Numerical evaluation for Cauchy type singular integrals on the interval.
title_full Numerical evaluation for Cauchy type singular integrals on the interval.
title_fullStr Numerical evaluation for Cauchy type singular integrals on the interval.
title_full_unstemmed Numerical evaluation for Cauchy type singular integrals on the interval.
title_short Numerical evaluation for Cauchy type singular integrals on the interval.
title_sort numerical evaluation for cauchy type singular integrals on the interval.
url http://psasir.upm.edu.my/id/eprint/15857/
http://psasir.upm.edu.my/id/eprint/15857/
http://psasir.upm.edu.my/id/eprint/15857/1/Numerical%20evaluation%20for%20Cauchy%20type%20singular%20integrals%20on%20the%20interval.pdf