Central Extensions of Nilpotent Lie and Leibniz Algebras

This thesis is concerned with the central extensions of nilpotent Lie and Leibniz algebras. The researcher has used the Skjelbred and Sund's method to construct all the 6¡dimensional non-isomorphic Lie algebras over complex numbers. Skjelbred and Sund have published in 1977 their method of c...

Full description

Bibliographic Details
Main Author: Langari, Mouna Bibi
Format: Thesis
Language:English
English
Published: 2010
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/12372/
http://psasir.upm.edu.my/id/eprint/12372/1/IPM_2010_2A.pdf
_version_ 1848841826610446336
author Langari, Mouna Bibi
author_facet Langari, Mouna Bibi
author_sort Langari, Mouna Bibi
building UPM Institutional Repository
collection Online Access
description This thesis is concerned with the central extensions of nilpotent Lie and Leibniz algebras. The researcher has used the Skjelbred and Sund's method to construct all the 6¡dimensional non-isomorphic Lie algebras over complex numbers. Skjelbred and Sund have published in 1977 their method of constructing all nilpotent Lie algebras of dimension n introducing those algebras of dimension < n, and their automorphism groups. The deployed method in classifying nilpotent Lie algebras for dimension n is necessarily comprised of two main steps. For the frist step, a plausibly redundant list of Lie algebras was confirmed which included all n-dimensional nilpotent Lie algebras. The next step is to discard the isomorphic copies generated from the list of Lie algebras. By then, the n¡dimensional nilpotent Lie algebras are confirmed as central extension of nilpotent Lie algebras for smaller dimensions. As the result, the action of the automorphism group is deployed to drastically decrease the number of isomorphic Lie algebras which may appear in the final list. The maple program is by then deployed to discard the final isomorphic copies from the calculation. Based on the elaborated method, the researcher must and center of Lie algebras then drived algebras. In order to locate a basis for second cohomology group of Lie algebras, the researcher must locate cocycles as well as coboundary. Further, there is the requirement to locate the most appropriate action for finding orbits. By then, every orbit will submit a representative that is illustrated by 0.
first_indexed 2025-11-15T07:49:25Z
format Thesis
id upm-12372
institution Universiti Putra Malaysia
institution_category Local University
language English
English
last_indexed 2025-11-15T07:49:25Z
publishDate 2010
recordtype eprints
repository_type Digital Repository
spelling upm-123722013-05-27T07:51:54Z http://psasir.upm.edu.my/id/eprint/12372/ Central Extensions of Nilpotent Lie and Leibniz Algebras Langari, Mouna Bibi This thesis is concerned with the central extensions of nilpotent Lie and Leibniz algebras. The researcher has used the Skjelbred and Sund's method to construct all the 6¡dimensional non-isomorphic Lie algebras over complex numbers. Skjelbred and Sund have published in 1977 their method of constructing all nilpotent Lie algebras of dimension n introducing those algebras of dimension < n, and their automorphism groups. The deployed method in classifying nilpotent Lie algebras for dimension n is necessarily comprised of two main steps. For the frist step, a plausibly redundant list of Lie algebras was confirmed which included all n-dimensional nilpotent Lie algebras. The next step is to discard the isomorphic copies generated from the list of Lie algebras. By then, the n¡dimensional nilpotent Lie algebras are confirmed as central extension of nilpotent Lie algebras for smaller dimensions. As the result, the action of the automorphism group is deployed to drastically decrease the number of isomorphic Lie algebras which may appear in the final list. The maple program is by then deployed to discard the final isomorphic copies from the calculation. Based on the elaborated method, the researcher must and center of Lie algebras then drived algebras. In order to locate a basis for second cohomology group of Lie algebras, the researcher must locate cocycles as well as coboundary. Further, there is the requirement to locate the most appropriate action for finding orbits. By then, every orbit will submit a representative that is illustrated by 0. 2010-06 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/12372/1/IPM_2010_2A.pdf Langari, Mouna Bibi (2010) Central Extensions of Nilpotent Lie and Leibniz Algebras. Masters thesis, Universiti Putra Malaysia. Nilpotent Lie groups Lie algebras English
spellingShingle Nilpotent Lie groups
Lie algebras
Langari, Mouna Bibi
Central Extensions of Nilpotent Lie and Leibniz Algebras
title Central Extensions of Nilpotent Lie and Leibniz Algebras
title_full Central Extensions of Nilpotent Lie and Leibniz Algebras
title_fullStr Central Extensions of Nilpotent Lie and Leibniz Algebras
title_full_unstemmed Central Extensions of Nilpotent Lie and Leibniz Algebras
title_short Central Extensions of Nilpotent Lie and Leibniz Algebras
title_sort central extensions of nilpotent lie and leibniz algebras
topic Nilpotent Lie groups
Lie algebras
url http://psasir.upm.edu.my/id/eprint/12372/
http://psasir.upm.edu.my/id/eprint/12372/1/IPM_2010_2A.pdf