Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool

Importance: Test accuracy studies often use small datasets to simultaneously select an optimal cutoff score that maximizes test accuracy and generate accuracy estimates. Objective: To evaluate the degree to which using data-driven methods to simultaneously select an optimal Patient Health Questionna...

Full description

Bibliographic Details
Main Authors: Levis, Brooke, Bhandari, Parash Mani, Neupane, Dipika, Fan, Suiqiong, Sun, Ying, He, Chen, Wu, Yin, Krishnan, Ankur, Negeri, Zelalem, Imran, Mahrukh, Rice, Danielle B., Riehm, Kira E., Azar, Marleine, Levis, Alexander W., Boruff, Jill, Cuijpers, Pim, Gilbody, Simon, Ioannidis, John P A, Kloda, Lorie A., Patten, Scott B., Ziegelstein, Roy C., Harel, Daphna, Takwoingi, Yemisi, Markham, Sarah, Alamri, Sultan H., Amtmann, Dagmar, Arroll, Bruce, Ayalon, Liat, Baradaran, Hamid R., Beraldi, Anna, Bernstein, Charles N., Bhana, Arvin, Bombardier, Charles H., Buji, Ryna Imma, Butterworth, Peter, Carter, Gregory, Chagas, Marcos H., Chan, Juliana C N, Chan, Lai Fong, Chibanda, Dixon, Clover, Kerrie, Conway, Aaron, Conwell, Yeates, Daray, Federico M., de Man-van Ginkel, Janneke M., Fann, Jesse R., Fischer, Felix H., Field, Sally, Fisher, Jane R W, Fung, Daniel S S, Gelaye, Bizu, Gholizadeh, Leila, Goodyear-Smith, Felicity, Green, Eric P., Greeno, Catherine G., Hall, Brian J., Hantsoo, Liisa, Härter, Martin, Hides, Leanne, Hobfoll, Stevan E., Honikman, Simone, Hyphantis, Thomas, Inagaki, Masatoshi, Iglesias-Gonzalez, Maria, Jeon, Hong Jin, Jetté, Nathalie, Khamseh, Mohammad E., Kiely, Kim M., Kohrt, Brandon A., Kwan, Yunxin, Lara, Maria Asunción, Levin-Aspenson, Holly F., Liu, Shen-Ing, Lotrakul, Manote, Loureiro, Sonia R., Löwe, Bernd, Luitel, Nagendra P., Lund, Crick, Marrie, Ruth Ann, Marsh, Laura, Marx, Brian P., McGuire, Anthony, Mohd Sidik, Sherina, Munhoz, Tiago N., Muramatsu, Kumiko, Nakku, Juliet E M, Navarrete, Laura, Osório, Flávia L, Pence, Brian W., Persoons, Philippe, Petersen, Inge, Picardi, Angelo, Pugh, Stephanie L., Quinn, Terence J., Rancans, Elmars, Rathod, Sujit D., Reuter, Katrin, Rooney, Alasdair G., Santos, Iná S, Schram, Miranda T., Shaaban, Juwita, Shinn, Eileen H., Sidebottom, Abbey, Simning, Adam, Spangenberg, Lena, Stafford, Lesley, Sung, Sharon C., Suzuki, Keiko, Tan, Pei Lin Lynnette, Taylor-Rowan, Martin, Tran, Thach D., Turner, Alyna, van der Feltz-Cornelis, Christina M., van Heyningen, Thandi, Vöhringer, Paul A., Wagner, Lynne I., Wang, Jian Li, Watson, David, White, Jennifer, Whooley, Mary A., Winkley, Kirsty, Wynter, Karen, Yamada, Mitsuhiko, Zeng, Qing Zhi, Zhang, Yuying, Thombs, Brett D., Benedetti, Andrea
Format: Article
Language:English
Published: American Medical Association 2024
Online Access:http://psasir.upm.edu.my/id/eprint/116236/
http://psasir.upm.edu.my/id/eprint/116236/1/116236.pdf
_version_ 1848866955946098688
author Levis, Brooke
Bhandari, Parash Mani
Neupane, Dipika
Fan, Suiqiong
Sun, Ying
He, Chen
Wu, Yin
Krishnan, Ankur
Negeri, Zelalem
Imran, Mahrukh
Rice, Danielle B.
Riehm, Kira E.
Azar, Marleine
Levis, Alexander W.
Boruff, Jill
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
Kloda, Lorie A.
Patten, Scott B.
Ziegelstein, Roy C.
Harel, Daphna
Takwoingi, Yemisi
Markham, Sarah
Alamri, Sultan H.
Amtmann, Dagmar
Arroll, Bruce
Ayalon, Liat
Baradaran, Hamid R.
Beraldi, Anna
Bernstein, Charles N.
Bhana, Arvin
Bombardier, Charles H.
Buji, Ryna Imma
Butterworth, Peter
Carter, Gregory
Chagas, Marcos H.
Chan, Juliana C N
Chan, Lai Fong
Chibanda, Dixon
Clover, Kerrie
Conway, Aaron
Conwell, Yeates
Daray, Federico M.
de Man-van Ginkel, Janneke M.
Fann, Jesse R.
Fischer, Felix H.
Field, Sally
Fisher, Jane R W
Fung, Daniel S S
Gelaye, Bizu
Gholizadeh, Leila
Goodyear-Smith, Felicity
Green, Eric P.
Greeno, Catherine G.
Hall, Brian J.
Hantsoo, Liisa
Härter, Martin
Hides, Leanne
Hobfoll, Stevan E.
Honikman, Simone
Hyphantis, Thomas
Inagaki, Masatoshi
Iglesias-Gonzalez, Maria
Jeon, Hong Jin
Jetté, Nathalie
Khamseh, Mohammad E.
Kiely, Kim M.
Kohrt, Brandon A.
Kwan, Yunxin
Lara, Maria Asunción
Levin-Aspenson, Holly F.
Liu, Shen-Ing
Lotrakul, Manote
Loureiro, Sonia R.
Löwe, Bernd
Luitel, Nagendra P.
Lund, Crick
Marrie, Ruth Ann
Marsh, Laura
Marx, Brian P.
McGuire, Anthony
Mohd Sidik, Sherina
Munhoz, Tiago N.
Muramatsu, Kumiko
Nakku, Juliet E M
Navarrete, Laura
Osório, Flávia L
Pence, Brian W.
Persoons, Philippe
Petersen, Inge
Picardi, Angelo
Pugh, Stephanie L.
Quinn, Terence J.
Rancans, Elmars
Rathod, Sujit D.
Reuter, Katrin
Rooney, Alasdair G.
Santos, Iná S
Schram, Miranda T.
Shaaban, Juwita
Shinn, Eileen H.
Sidebottom, Abbey
Simning, Adam
Spangenberg, Lena
Stafford, Lesley
Sung, Sharon C.
Suzuki, Keiko
Tan, Pei Lin Lynnette
Taylor-Rowan, Martin
Tran, Thach D.
Turner, Alyna
van der Feltz-Cornelis, Christina M.
van Heyningen, Thandi
Vöhringer, Paul A.
Wagner, Lynne I.
Wang, Jian Li
Watson, David
White, Jennifer
Whooley, Mary A.
Winkley, Kirsty
Wynter, Karen
Yamada, Mitsuhiko
Zeng, Qing Zhi
Zhang, Yuying
Thombs, Brett D.
Benedetti, Andrea
author_facet Levis, Brooke
Bhandari, Parash Mani
Neupane, Dipika
Fan, Suiqiong
Sun, Ying
He, Chen
Wu, Yin
Krishnan, Ankur
Negeri, Zelalem
Imran, Mahrukh
Rice, Danielle B.
Riehm, Kira E.
Azar, Marleine
Levis, Alexander W.
Boruff, Jill
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
Kloda, Lorie A.
Patten, Scott B.
Ziegelstein, Roy C.
Harel, Daphna
Takwoingi, Yemisi
Markham, Sarah
Alamri, Sultan H.
Amtmann, Dagmar
Arroll, Bruce
Ayalon, Liat
Baradaran, Hamid R.
Beraldi, Anna
Bernstein, Charles N.
Bhana, Arvin
Bombardier, Charles H.
Buji, Ryna Imma
Butterworth, Peter
Carter, Gregory
Chagas, Marcos H.
Chan, Juliana C N
Chan, Lai Fong
Chibanda, Dixon
Clover, Kerrie
Conway, Aaron
Conwell, Yeates
Daray, Federico M.
de Man-van Ginkel, Janneke M.
Fann, Jesse R.
Fischer, Felix H.
Field, Sally
Fisher, Jane R W
Fung, Daniel S S
Gelaye, Bizu
Gholizadeh, Leila
Goodyear-Smith, Felicity
Green, Eric P.
Greeno, Catherine G.
Hall, Brian J.
Hantsoo, Liisa
Härter, Martin
Hides, Leanne
Hobfoll, Stevan E.
Honikman, Simone
Hyphantis, Thomas
Inagaki, Masatoshi
Iglesias-Gonzalez, Maria
Jeon, Hong Jin
Jetté, Nathalie
Khamseh, Mohammad E.
Kiely, Kim M.
Kohrt, Brandon A.
Kwan, Yunxin
Lara, Maria Asunción
Levin-Aspenson, Holly F.
Liu, Shen-Ing
Lotrakul, Manote
Loureiro, Sonia R.
Löwe, Bernd
Luitel, Nagendra P.
Lund, Crick
Marrie, Ruth Ann
Marsh, Laura
Marx, Brian P.
McGuire, Anthony
Mohd Sidik, Sherina
Munhoz, Tiago N.
Muramatsu, Kumiko
Nakku, Juliet E M
Navarrete, Laura
Osório, Flávia L
Pence, Brian W.
Persoons, Philippe
Petersen, Inge
Picardi, Angelo
Pugh, Stephanie L.
Quinn, Terence J.
Rancans, Elmars
Rathod, Sujit D.
Reuter, Katrin
Rooney, Alasdair G.
Santos, Iná S
Schram, Miranda T.
Shaaban, Juwita
Shinn, Eileen H.
Sidebottom, Abbey
Simning, Adam
Spangenberg, Lena
Stafford, Lesley
Sung, Sharon C.
Suzuki, Keiko
Tan, Pei Lin Lynnette
Taylor-Rowan, Martin
Tran, Thach D.
Turner, Alyna
van der Feltz-Cornelis, Christina M.
van Heyningen, Thandi
Vöhringer, Paul A.
Wagner, Lynne I.
Wang, Jian Li
Watson, David
White, Jennifer
Whooley, Mary A.
Winkley, Kirsty
Wynter, Karen
Yamada, Mitsuhiko
Zeng, Qing Zhi
Zhang, Yuying
Thombs, Brett D.
Benedetti, Andrea
author_sort Levis, Brooke
building UPM Institutional Repository
collection Online Access
description Importance: Test accuracy studies often use small datasets to simultaneously select an optimal cutoff score that maximizes test accuracy and generate accuracy estimates. Objective: To evaluate the degree to which using data-driven methods to simultaneously select an optimal Patient Health Questionnaire-9 (PHQ-9) cutoff score and estimate accuracy yields (1) optimal cutoff scores that differ from the population-level optimal cutoff score and (2) biased accuracy estimates. Design, Setting, and Participants: This study used cross-sectional data from an existing individual participant data meta-analysis (IPDMA) database on PHQ-9 screening accuracy to represent a hypothetical population. Studies in the IPDMA database compared participant PHQ-9 scores with a major depression classification. From the IPDMA population, 1000 studies of 100, 200, 500, and 1000 participants each were resampled. Main Outcomes and Measures: For the full IPDMA population and each simulated study, an optimal cutoff score was selected by maximizing the Youden index. Accuracy estimates for optimal cutoff scores in simulated studies were compared with accuracy in the full population. Results: The IPDMA database included 100 primary studies with 44 503 participants (4541 [10%] cases of major depression). The population-level optimal cutoff score was 8 or higher. Optimal cutoff scores in simulated studies ranged from 2 or higher to 21 or higher in samples of 100 participants and 5 or higher to 11 or higher in samples of 1000 participants. The percentage of simulated studies that identified the true optimal cutoff score of 8 or higher was 17% for samples of 100 participants and 33% for samples of 1000 participants. Compared with estimates for a cutoff score of 8 or higher in the population, sensitivity was overestimated by 6.4 (95% CI, 5.7-7.1) percentage points in samples of 100 participants, 4.9 (95% CI, 4.3-5.5) percentage points in samples of 200 participants, 2.2 (95% CI, 1.8-2.6) percentage points in samples of 500 participants, and 1.8 (95% CI, 1.5-2.1) percentage points in samples of 1000 participants. Specificity was within 1 percentage point across sample sizes. Conclusions and Relevance: This study of cross-sectional data found that optimal cutoff scores and accuracy estimates differed substantially from population values when data-driven methods were used to simultaneously identify an optimal cutoff score and estimate accuracy. Users of diagnostic accuracy evidence should evaluate studies of accuracy with caution and ensure that cutoff score recommendations are based on adequately powered research or well-conducted meta-analyses.
first_indexed 2025-11-15T14:28:50Z
format Article
id upm-116236
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T14:28:50Z
publishDate 2024
publisher American Medical Association
recordtype eprints
repository_type Digital Repository
spelling upm-1162362025-03-21T03:42:43Z http://psasir.upm.edu.my/id/eprint/116236/ Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool Levis, Brooke Bhandari, Parash Mani Neupane, Dipika Fan, Suiqiong Sun, Ying He, Chen Wu, Yin Krishnan, Ankur Negeri, Zelalem Imran, Mahrukh Rice, Danielle B. Riehm, Kira E. Azar, Marleine Levis, Alexander W. Boruff, Jill Cuijpers, Pim Gilbody, Simon Ioannidis, John P A Kloda, Lorie A. Patten, Scott B. Ziegelstein, Roy C. Harel, Daphna Takwoingi, Yemisi Markham, Sarah Alamri, Sultan H. Amtmann, Dagmar Arroll, Bruce Ayalon, Liat Baradaran, Hamid R. Beraldi, Anna Bernstein, Charles N. Bhana, Arvin Bombardier, Charles H. Buji, Ryna Imma Butterworth, Peter Carter, Gregory Chagas, Marcos H. Chan, Juliana C N Chan, Lai Fong Chibanda, Dixon Clover, Kerrie Conway, Aaron Conwell, Yeates Daray, Federico M. de Man-van Ginkel, Janneke M. Fann, Jesse R. Fischer, Felix H. Field, Sally Fisher, Jane R W Fung, Daniel S S Gelaye, Bizu Gholizadeh, Leila Goodyear-Smith, Felicity Green, Eric P. Greeno, Catherine G. Hall, Brian J. Hantsoo, Liisa Härter, Martin Hides, Leanne Hobfoll, Stevan E. Honikman, Simone Hyphantis, Thomas Inagaki, Masatoshi Iglesias-Gonzalez, Maria Jeon, Hong Jin Jetté, Nathalie Khamseh, Mohammad E. Kiely, Kim M. Kohrt, Brandon A. Kwan, Yunxin Lara, Maria Asunción Levin-Aspenson, Holly F. Liu, Shen-Ing Lotrakul, Manote Loureiro, Sonia R. Löwe, Bernd Luitel, Nagendra P. Lund, Crick Marrie, Ruth Ann Marsh, Laura Marx, Brian P. McGuire, Anthony Mohd Sidik, Sherina Munhoz, Tiago N. Muramatsu, Kumiko Nakku, Juliet E M Navarrete, Laura Osório, Flávia L Pence, Brian W. Persoons, Philippe Petersen, Inge Picardi, Angelo Pugh, Stephanie L. Quinn, Terence J. Rancans, Elmars Rathod, Sujit D. Reuter, Katrin Rooney, Alasdair G. Santos, Iná S Schram, Miranda T. Shaaban, Juwita Shinn, Eileen H. Sidebottom, Abbey Simning, Adam Spangenberg, Lena Stafford, Lesley Sung, Sharon C. Suzuki, Keiko Tan, Pei Lin Lynnette Taylor-Rowan, Martin Tran, Thach D. Turner, Alyna van der Feltz-Cornelis, Christina M. van Heyningen, Thandi Vöhringer, Paul A. Wagner, Lynne I. Wang, Jian Li Watson, David White, Jennifer Whooley, Mary A. Winkley, Kirsty Wynter, Karen Yamada, Mitsuhiko Zeng, Qing Zhi Zhang, Yuying Thombs, Brett D. Benedetti, Andrea Importance: Test accuracy studies often use small datasets to simultaneously select an optimal cutoff score that maximizes test accuracy and generate accuracy estimates. Objective: To evaluate the degree to which using data-driven methods to simultaneously select an optimal Patient Health Questionnaire-9 (PHQ-9) cutoff score and estimate accuracy yields (1) optimal cutoff scores that differ from the population-level optimal cutoff score and (2) biased accuracy estimates. Design, Setting, and Participants: This study used cross-sectional data from an existing individual participant data meta-analysis (IPDMA) database on PHQ-9 screening accuracy to represent a hypothetical population. Studies in the IPDMA database compared participant PHQ-9 scores with a major depression classification. From the IPDMA population, 1000 studies of 100, 200, 500, and 1000 participants each were resampled. Main Outcomes and Measures: For the full IPDMA population and each simulated study, an optimal cutoff score was selected by maximizing the Youden index. Accuracy estimates for optimal cutoff scores in simulated studies were compared with accuracy in the full population. Results: The IPDMA database included 100 primary studies with 44 503 participants (4541 [10%] cases of major depression). The population-level optimal cutoff score was 8 or higher. Optimal cutoff scores in simulated studies ranged from 2 or higher to 21 or higher in samples of 100 participants and 5 or higher to 11 or higher in samples of 1000 participants. The percentage of simulated studies that identified the true optimal cutoff score of 8 or higher was 17% for samples of 100 participants and 33% for samples of 1000 participants. Compared with estimates for a cutoff score of 8 or higher in the population, sensitivity was overestimated by 6.4 (95% CI, 5.7-7.1) percentage points in samples of 100 participants, 4.9 (95% CI, 4.3-5.5) percentage points in samples of 200 participants, 2.2 (95% CI, 1.8-2.6) percentage points in samples of 500 participants, and 1.8 (95% CI, 1.5-2.1) percentage points in samples of 1000 participants. Specificity was within 1 percentage point across sample sizes. Conclusions and Relevance: This study of cross-sectional data found that optimal cutoff scores and accuracy estimates differed substantially from population values when data-driven methods were used to simultaneously identify an optimal cutoff score and estimate accuracy. Users of diagnostic accuracy evidence should evaluate studies of accuracy with caution and ensure that cutoff score recommendations are based on adequately powered research or well-conducted meta-analyses. American Medical Association 2024 Article PeerReviewed text en cc_by_4 http://psasir.upm.edu.my/id/eprint/116236/1/116236.pdf Levis, Brooke and Bhandari, Parash Mani and Neupane, Dipika and Fan, Suiqiong and Sun, Ying and He, Chen and Wu, Yin and Krishnan, Ankur and Negeri, Zelalem and Imran, Mahrukh and Rice, Danielle B. and Riehm, Kira E. and Azar, Marleine and Levis, Alexander W. and Boruff, Jill and Cuijpers, Pim and Gilbody, Simon and Ioannidis, John P A and Kloda, Lorie A. and Patten, Scott B. and Ziegelstein, Roy C. and Harel, Daphna and Takwoingi, Yemisi and Markham, Sarah and Alamri, Sultan H. and Amtmann, Dagmar and Arroll, Bruce and Ayalon, Liat and Baradaran, Hamid R. and Beraldi, Anna and Bernstein, Charles N. and Bhana, Arvin and Bombardier, Charles H. and Buji, Ryna Imma and Butterworth, Peter and Carter, Gregory and Chagas, Marcos H. and Chan, Juliana C N and Chan, Lai Fong and Chibanda, Dixon and Clover, Kerrie and Conway, Aaron and Conwell, Yeates and Daray, Federico M. and de Man-van Ginkel, Janneke M. and Fann, Jesse R. and Fischer, Felix H. and Field, Sally and Fisher, Jane R W and Fung, Daniel S S and Gelaye, Bizu and Gholizadeh, Leila and Goodyear-Smith, Felicity and Green, Eric P. and Greeno, Catherine G. and Hall, Brian J. and Hantsoo, Liisa and Härter, Martin and Hides, Leanne and Hobfoll, Stevan E. and Honikman, Simone and Hyphantis, Thomas and Inagaki, Masatoshi and Iglesias-Gonzalez, Maria and Jeon, Hong Jin and Jetté, Nathalie and Khamseh, Mohammad E. and Kiely, Kim M. and Kohrt, Brandon A. and Kwan, Yunxin and Lara, Maria Asunción and Levin-Aspenson, Holly F. and Liu, Shen-Ing and Lotrakul, Manote and Loureiro, Sonia R. and Löwe, Bernd and Luitel, Nagendra P. and Lund, Crick and Marrie, Ruth Ann and Marsh, Laura and Marx, Brian P. and McGuire, Anthony and Mohd Sidik, Sherina and Munhoz, Tiago N. and Muramatsu, Kumiko and Nakku, Juliet E M and Navarrete, Laura and Osório, Flávia L and Pence, Brian W. and Persoons, Philippe and Petersen, Inge and Picardi, Angelo and Pugh, Stephanie L. and Quinn, Terence J. and Rancans, Elmars and Rathod, Sujit D. and Reuter, Katrin and Rooney, Alasdair G. and Santos, Iná S and Schram, Miranda T. and Shaaban, Juwita and Shinn, Eileen H. and Sidebottom, Abbey and Simning, Adam and Spangenberg, Lena and Stafford, Lesley and Sung, Sharon C. and Suzuki, Keiko and Tan, Pei Lin Lynnette and Taylor-Rowan, Martin and Tran, Thach D. and Turner, Alyna and van der Feltz-Cornelis, Christina M. and van Heyningen, Thandi and Vöhringer, Paul A. and Wagner, Lynne I. and Wang, Jian Li and Watson, David and White, Jennifer and Whooley, Mary A. and Winkley, Kirsty and Wynter, Karen and Yamada, Mitsuhiko and Zeng, Qing Zhi and Zhang, Yuying and Thombs, Brett D. and Benedetti, Andrea (2024) Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool. JAMA network open, 7 (11). art. no. e2429630. pp. 1-15. ISSN 2574-3805 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2826730 10.1001/jamanetworkopen.2024.29630
spellingShingle Levis, Brooke
Bhandari, Parash Mani
Neupane, Dipika
Fan, Suiqiong
Sun, Ying
He, Chen
Wu, Yin
Krishnan, Ankur
Negeri, Zelalem
Imran, Mahrukh
Rice, Danielle B.
Riehm, Kira E.
Azar, Marleine
Levis, Alexander W.
Boruff, Jill
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
Kloda, Lorie A.
Patten, Scott B.
Ziegelstein, Roy C.
Harel, Daphna
Takwoingi, Yemisi
Markham, Sarah
Alamri, Sultan H.
Amtmann, Dagmar
Arroll, Bruce
Ayalon, Liat
Baradaran, Hamid R.
Beraldi, Anna
Bernstein, Charles N.
Bhana, Arvin
Bombardier, Charles H.
Buji, Ryna Imma
Butterworth, Peter
Carter, Gregory
Chagas, Marcos H.
Chan, Juliana C N
Chan, Lai Fong
Chibanda, Dixon
Clover, Kerrie
Conway, Aaron
Conwell, Yeates
Daray, Federico M.
de Man-van Ginkel, Janneke M.
Fann, Jesse R.
Fischer, Felix H.
Field, Sally
Fisher, Jane R W
Fung, Daniel S S
Gelaye, Bizu
Gholizadeh, Leila
Goodyear-Smith, Felicity
Green, Eric P.
Greeno, Catherine G.
Hall, Brian J.
Hantsoo, Liisa
Härter, Martin
Hides, Leanne
Hobfoll, Stevan E.
Honikman, Simone
Hyphantis, Thomas
Inagaki, Masatoshi
Iglesias-Gonzalez, Maria
Jeon, Hong Jin
Jetté, Nathalie
Khamseh, Mohammad E.
Kiely, Kim M.
Kohrt, Brandon A.
Kwan, Yunxin
Lara, Maria Asunción
Levin-Aspenson, Holly F.
Liu, Shen-Ing
Lotrakul, Manote
Loureiro, Sonia R.
Löwe, Bernd
Luitel, Nagendra P.
Lund, Crick
Marrie, Ruth Ann
Marsh, Laura
Marx, Brian P.
McGuire, Anthony
Mohd Sidik, Sherina
Munhoz, Tiago N.
Muramatsu, Kumiko
Nakku, Juliet E M
Navarrete, Laura
Osório, Flávia L
Pence, Brian W.
Persoons, Philippe
Petersen, Inge
Picardi, Angelo
Pugh, Stephanie L.
Quinn, Terence J.
Rancans, Elmars
Rathod, Sujit D.
Reuter, Katrin
Rooney, Alasdair G.
Santos, Iná S
Schram, Miranda T.
Shaaban, Juwita
Shinn, Eileen H.
Sidebottom, Abbey
Simning, Adam
Spangenberg, Lena
Stafford, Lesley
Sung, Sharon C.
Suzuki, Keiko
Tan, Pei Lin Lynnette
Taylor-Rowan, Martin
Tran, Thach D.
Turner, Alyna
van der Feltz-Cornelis, Christina M.
van Heyningen, Thandi
Vöhringer, Paul A.
Wagner, Lynne I.
Wang, Jian Li
Watson, David
White, Jennifer
Whooley, Mary A.
Winkley, Kirsty
Wynter, Karen
Yamada, Mitsuhiko
Zeng, Qing Zhi
Zhang, Yuying
Thombs, Brett D.
Benedetti, Andrea
Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title_full Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title_fullStr Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title_full_unstemmed Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title_short Data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
title_sort data-driven cutoff selection for the patient health questionnaire-9 depression screening tool
url http://psasir.upm.edu.my/id/eprint/116236/
http://psasir.upm.edu.my/id/eprint/116236/
http://psasir.upm.edu.my/id/eprint/116236/
http://psasir.upm.edu.my/id/eprint/116236/1/116236.pdf