The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs

Abstract The musical descriptor can be characterize using quantitative evaluation of audio sounds. This paper evaluates the musical descriptors for P Ramlee instrumental songs utilizing the Fast Fourier Transform (FFT) from the audio sounds signal. In this study, Python programming language is us...

Full description

Bibliographic Details
Main Authors: Musib, Ahmad Faudzi, Hamdan, Sinin, Kuryati, Kipli, Sinin, Aaliyawani Ezzerin, Johari Abdullah, Johari Abdullah
Format: Article
Language:English
Published: University of Brunei Darussalam 2024
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/114519/
http://psasir.upm.edu.my/id/eprint/114519/1/114519.pdf
_version_ 1848866517681176576
author Musib, Ahmad Faudzi
Hamdan, Sinin
Kuryati, Kipli
Sinin, Aaliyawani Ezzerin
Johari Abdullah, Johari Abdullah
author_facet Musib, Ahmad Faudzi
Hamdan, Sinin
Kuryati, Kipli
Sinin, Aaliyawani Ezzerin
Johari Abdullah, Johari Abdullah
author_sort Musib, Ahmad Faudzi
building UPM Institutional Repository
collection Online Access
description Abstract The musical descriptor can be characterize using quantitative evaluation of audio sounds. This paper evaluates the musical descriptors for P Ramlee instrumental songs utilizing the Fast Fourier Transform (FFT) from the audio sounds signal. In this study, Python programming language is used to develop a series of custom scripts to calculate the musical descriptors. The approach involved constructing musical descriptors from instrumental music through analysis and digital processing of the spectra. The signal data were first transformed using the FFT to extract frequencies and intensities, which are crucial for identifying the spectral signature of musical sounds. The FFT is particularly valuable as it uniquely represents the spectral content of any musical sound by transforming the time-domain signal into its frequency- domain components. The Affinity coefficient, A, increased from 1.43 (Jangan Tinggal Daku) to 6.67 (Dendang Perantau), 8.96 (Di Pinggiran) and 13.81 (Getaran Jiwa). The Sharpness coefficient, S for Di Pinggiran is 0.039, Getaran Jiwa is 0.040, Dendang Perantau is 0.056 and Jangan Tinggal Daku is 0.065. The Harmonicity coefficient H for Di Pinggiran showed the highest H i.e. 17.0 followed by Dendang Perantau i.e. 8.2, Jangan Tinggal Daku i.e. 7.5 and Getaran Jiwa i.e. only 5.0. Monotony coefficient M of Dendang Perantau showed the lowest M i.e. ¡0.0096 followed by Di Pinggiran i.e. ¡0.0013, Jangan Tinggal Daku i.e. 0.0198 and Getaran Jiwa i.e. 0.0638. The Mean Affinity (MA) increase from 0.1689 (Getaran Jiwa) to 0.5322 (Dendang Perantau), 0.8673 (Di Pinggiran) and 1.3877 (Jangan Tinggal Daku). The Mean Contrast (MC) increase from 0.1568 (Di Pinggiran) to 0.3160 (Dendang Perantau), 0.4430 (Jangan Tinggal Daku) and 0.4755 (Getaran Jiwa). Keywords: Affinity, Sharpness, Harmonicity, Monotony, Mean Affinity and Mean Contrast
first_indexed 2025-11-15T14:21:52Z
format Article
id upm-114519
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T14:21:52Z
publishDate 2024
publisher University of Brunei Darussalam
recordtype eprints
repository_type Digital Repository
spelling upm-1145192025-01-22T03:49:17Z http://psasir.upm.edu.my/id/eprint/114519/ The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs Musib, Ahmad Faudzi Hamdan, Sinin Kuryati, Kipli Sinin, Aaliyawani Ezzerin Johari Abdullah, Johari Abdullah Abstract The musical descriptor can be characterize using quantitative evaluation of audio sounds. This paper evaluates the musical descriptors for P Ramlee instrumental songs utilizing the Fast Fourier Transform (FFT) from the audio sounds signal. In this study, Python programming language is used to develop a series of custom scripts to calculate the musical descriptors. The approach involved constructing musical descriptors from instrumental music through analysis and digital processing of the spectra. The signal data were first transformed using the FFT to extract frequencies and intensities, which are crucial for identifying the spectral signature of musical sounds. The FFT is particularly valuable as it uniquely represents the spectral content of any musical sound by transforming the time-domain signal into its frequency- domain components. The Affinity coefficient, A, increased from 1.43 (Jangan Tinggal Daku) to 6.67 (Dendang Perantau), 8.96 (Di Pinggiran) and 13.81 (Getaran Jiwa). The Sharpness coefficient, S for Di Pinggiran is 0.039, Getaran Jiwa is 0.040, Dendang Perantau is 0.056 and Jangan Tinggal Daku is 0.065. The Harmonicity coefficient H for Di Pinggiran showed the highest H i.e. 17.0 followed by Dendang Perantau i.e. 8.2, Jangan Tinggal Daku i.e. 7.5 and Getaran Jiwa i.e. only 5.0. Monotony coefficient M of Dendang Perantau showed the lowest M i.e. ¡0.0096 followed by Di Pinggiran i.e. ¡0.0013, Jangan Tinggal Daku i.e. 0.0198 and Getaran Jiwa i.e. 0.0638. The Mean Affinity (MA) increase from 0.1689 (Getaran Jiwa) to 0.5322 (Dendang Perantau), 0.8673 (Di Pinggiran) and 1.3877 (Jangan Tinggal Daku). The Mean Contrast (MC) increase from 0.1568 (Di Pinggiran) to 0.3160 (Dendang Perantau), 0.4430 (Jangan Tinggal Daku) and 0.4755 (Getaran Jiwa). Keywords: Affinity, Sharpness, Harmonicity, Monotony, Mean Affinity and Mean Contrast University of Brunei Darussalam 2024-11-25 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/114519/1/114519.pdf Musib, Ahmad Faudzi and Hamdan, Sinin and Kuryati, Kipli and Sinin, Aaliyawani Ezzerin and Johari Abdullah, Johari Abdullah (2024) The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs. ASEAN Journal on Science and Technology for Development, 41 (3). pp. 279-291. ISSN 0217-5460; eISSN: 2224-9028 https://ajstd.ubd.edu.bn/journal/vol41/iss3/7/ Music 10.61931/2224-9028.1601
spellingShingle Music
Musib, Ahmad Faudzi
Hamdan, Sinin
Kuryati, Kipli
Sinin, Aaliyawani Ezzerin
Johari Abdullah, Johari Abdullah
The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title_full The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title_fullStr The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title_full_unstemmed The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title_short The musical descriptor using Fast Fourier Transform (FFT): examples in P Ramlee songs
title_sort musical descriptor using fast fourier transform (fft): examples in p ramlee songs
topic Music
url http://psasir.upm.edu.my/id/eprint/114519/
http://psasir.upm.edu.my/id/eprint/114519/
http://psasir.upm.edu.my/id/eprint/114519/
http://psasir.upm.edu.my/id/eprint/114519/1/114519.pdf