Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films

Dabai (Canarium odontophyllum Miq.) is a highly nutritious fruit that has a huge potential to be marketed both locally and globally. However, the lack of promotion leads to an oversupply during peak season, thus reducing its market price. Proper handling and packaging are therefore necessary to main...

Full description

Bibliographic Details
Main Authors: Azhar Shapawi, Zahrah-Izati, Ariffin, Siti Hajar, Shamsudin, Rosnah, Mohammed Amin Tawakkal, Intan Syafinaz, Mohd Basri, Mohd Salahuddin
Format: Article
Language:English
Published: Universiti Putra Malaysia 2023
Online Access:http://psasir.upm.edu.my/id/eprint/110302/
http://psasir.upm.edu.my/id/eprint/110302/1/110302.pdf
_version_ 1848865488543678464
author Azhar Shapawi, Zahrah-Izati
Ariffin, Siti Hajar
Shamsudin, Rosnah
Mohammed Amin Tawakkal, Intan Syafinaz
Mohd Basri, Mohd Salahuddin
author_facet Azhar Shapawi, Zahrah-Izati
Ariffin, Siti Hajar
Shamsudin, Rosnah
Mohammed Amin Tawakkal, Intan Syafinaz
Mohd Basri, Mohd Salahuddin
author_sort Azhar Shapawi, Zahrah-Izati
building UPM Institutional Repository
collection Online Access
description Dabai (Canarium odontophyllum Miq.) is a highly nutritious fruit that has a huge potential to be marketed both locally and globally. However, the lack of promotion leads to an oversupply during peak season, thus reducing its market price. Proper handling and packaging are therefore necessary to maintain the quality and extend the shelf life of dabai. In the present work, nylon film with an oxygen transmission rate (OTR) of 55 cc/m2 /day and water vapour transmission rate (WVTR) of 334 g/m2 /day; polyethylene terephthalate (PET) film with an OTR of 90 cc/m2 /day and WVTR of 35 g/m2 /day; and low-density polyethylene (LDPE) film with an OTR of 8000 cc/m2 /day and WVTR of 200 g/m2 /day were used to pack dabai and stored at 5°C for 14 d. All films had a dimension of 200 × 300 mm, and a thickness of 0.01 μm. It was found that dabai maintained its hue angle (h°) values within the dark purple region (299.73° to 338.64°) and its lightness (L*) values throughout storage. However, the colour intensity (chroma) significantly changed (p < 0.05) between different films throughout storage (p < 0.05). The control sample had the most significant decrease in firmness and weight (p < 0.05) between day 0 and 14, followed by the samples stored in PET, LDPE, and nylon. Whereas the samples in LDPE demonstrated the lowest respiration rate as compared to nylon and PET. The uncompetitive Michaelis-Menten equation model was used to model the respiration rate of dabai. Results showed that all films obtained good fit (R 2 of near to 1). Additionally, the mean relative percentage (E) was less than 10, thus indicating that the data were suitable for real-time application.
first_indexed 2025-11-15T14:05:30Z
format Article
id upm-110302
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T14:05:30Z
publishDate 2023
publisher Universiti Putra Malaysia
recordtype eprints
repository_type Digital Repository
spelling upm-1103022024-10-07T03:48:39Z http://psasir.upm.edu.my/id/eprint/110302/ Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films Azhar Shapawi, Zahrah-Izati Ariffin, Siti Hajar Shamsudin, Rosnah Mohammed Amin Tawakkal, Intan Syafinaz Mohd Basri, Mohd Salahuddin Dabai (Canarium odontophyllum Miq.) is a highly nutritious fruit that has a huge potential to be marketed both locally and globally. However, the lack of promotion leads to an oversupply during peak season, thus reducing its market price. Proper handling and packaging are therefore necessary to maintain the quality and extend the shelf life of dabai. In the present work, nylon film with an oxygen transmission rate (OTR) of 55 cc/m2 /day and water vapour transmission rate (WVTR) of 334 g/m2 /day; polyethylene terephthalate (PET) film with an OTR of 90 cc/m2 /day and WVTR of 35 g/m2 /day; and low-density polyethylene (LDPE) film with an OTR of 8000 cc/m2 /day and WVTR of 200 g/m2 /day were used to pack dabai and stored at 5°C for 14 d. All films had a dimension of 200 × 300 mm, and a thickness of 0.01 μm. It was found that dabai maintained its hue angle (h°) values within the dark purple region (299.73° to 338.64°) and its lightness (L*) values throughout storage. However, the colour intensity (chroma) significantly changed (p < 0.05) between different films throughout storage (p < 0.05). The control sample had the most significant decrease in firmness and weight (p < 0.05) between day 0 and 14, followed by the samples stored in PET, LDPE, and nylon. Whereas the samples in LDPE demonstrated the lowest respiration rate as compared to nylon and PET. The uncompetitive Michaelis-Menten equation model was used to model the respiration rate of dabai. Results showed that all films obtained good fit (R 2 of near to 1). Additionally, the mean relative percentage (E) was less than 10, thus indicating that the data were suitable for real-time application. Universiti Putra Malaysia 2023-10 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/110302/1/110302.pdf Azhar Shapawi, Zahrah-Izati and Ariffin, Siti Hajar and Shamsudin, Rosnah and Mohammed Amin Tawakkal, Intan Syafinaz and Mohd Basri, Mohd Salahuddin (2023) Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films. International Food Research Journal, 30 (5). pp. 1320-1329. ISSN 1985-4668; eISSN: 2231-7546 http://www.ifrj.upm.edu.my/ifrj-2023-30-issue-5.html 10.47836/ifrj.30.5.20
spellingShingle Azhar Shapawi, Zahrah-Izati
Ariffin, Siti Hajar
Shamsudin, Rosnah
Mohammed Amin Tawakkal, Intan Syafinaz
Mohd Basri, Mohd Salahuddin
Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title_full Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title_fullStr Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title_full_unstemmed Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title_short Modelling the respiration rate of dabai fruit (Canarium odontophyllum Miq.) stored in different packaging films
title_sort modelling the respiration rate of dabai fruit (canarium odontophyllum miq.) stored in different packaging films
url http://psasir.upm.edu.my/id/eprint/110302/
http://psasir.upm.edu.my/id/eprint/110302/
http://psasir.upm.edu.my/id/eprint/110302/
http://psasir.upm.edu.my/id/eprint/110302/1/110302.pdf