Parameter space of Morse oscillator
We present an analysis of the mathematical structure of SU(2) group, specifically the commutation relation between the raising and lowering operators of the Morse oscillator. The connection between the commutator of operators and the parameters of a Morse oscillator is investigated. We show that the...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Malaysian Institute of Physics
2023
|
| Online Access: | http://psasir.upm.edu.my/id/eprint/110211/ http://psasir.upm.edu.my/id/eprint/110211/1/110211.pdf |
| _version_ | 1848865462501244928 |
|---|---|
| author | Yang, T. Min M. S., Nurisya |
| author_facet | Yang, T. Min M. S., Nurisya |
| author_sort | Yang, T. Min |
| building | UPM Institutional Repository |
| collection | Online Access |
| description | We present an analysis of the mathematical structure of SU(2) group, specifically the commutation relation between the raising and lowering operators of the Morse oscillator. The connection between the commutator of operators and the parameters of a Morse oscillator is investigated. We show that the changes in parameter are important in the construction of the commutation relation. The parameter space of the Morse oscillator is visualized to scrutinize the mathematical relations that are related to the Morse oscillator. This parameter space is the space of possible parameter values that depend on the depth of the Morse potential well and other parameters. We discuss the plots of the parameter space in detail. The algorithm that we present is reliable to a large extent. It is also applicable to other quantum systems with certain modifications. |
| first_indexed | 2025-11-15T14:05:06Z |
| format | Article |
| id | upm-110211 |
| institution | Universiti Putra Malaysia |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T14:05:06Z |
| publishDate | 2023 |
| publisher | Malaysian Institute of Physics |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | upm-1102112024-09-10T01:44:17Z http://psasir.upm.edu.my/id/eprint/110211/ Parameter space of Morse oscillator Yang, T. Min M. S., Nurisya We present an analysis of the mathematical structure of SU(2) group, specifically the commutation relation between the raising and lowering operators of the Morse oscillator. The connection between the commutator of operators and the parameters of a Morse oscillator is investigated. We show that the changes in parameter are important in the construction of the commutation relation. The parameter space of the Morse oscillator is visualized to scrutinize the mathematical relations that are related to the Morse oscillator. This parameter space is the space of possible parameter values that depend on the depth of the Morse potential well and other parameters. We discuss the plots of the parameter space in detail. The algorithm that we present is reliable to a large extent. It is also applicable to other quantum systems with certain modifications. Malaysian Institute of Physics 2023 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/110211/1/110211.pdf Yang, T. Min and M. S., Nurisya (2023) Parameter space of Morse oscillator. Jurnal Fizik Malaysia, 44 (1). pp. 10001-100012. ISSN 0128-0333 ; EISSN: 2590-4191 https://ifmmy.sharepoint.com/:b:/r/sites/jurnal-fizik-malaysia/Shared%20Documents/JFM%20Published%20Papers/Volume%2044%20Issue%201%20(2023)/jfm2023_Vol44No1_10001.pdf?csf=1&web=1&e=aTpsBj |
| spellingShingle | Yang, T. Min M. S., Nurisya Parameter space of Morse oscillator |
| title | Parameter space of Morse oscillator |
| title_full | Parameter space of Morse oscillator |
| title_fullStr | Parameter space of Morse oscillator |
| title_full_unstemmed | Parameter space of Morse oscillator |
| title_short | Parameter space of Morse oscillator |
| title_sort | parameter space of morse oscillator |
| url | http://psasir.upm.edu.my/id/eprint/110211/ http://psasir.upm.edu.my/id/eprint/110211/ http://psasir.upm.edu.my/id/eprint/110211/1/110211.pdf |