A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power
Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Here...
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
Multidisciplinary Digital Publishing Institute
2023
|
| Online Access: | http://psasir.upm.edu.my/id/eprint/106589/ |
| _version_ | 1848864786757976064 |
|---|---|
| author | Rahmadiawan, Dieter Abral, Hairul Kotodeli, Rafi Alzues Sugiarti, Eni Muslimin, Ahmad Novi Admi, Ratna Isnanita Arafat, Andril Kim, Hyun-Joong Sapuan, S. M. Kosasih, Engkos Achmad |
| author_facet | Rahmadiawan, Dieter Abral, Hairul Kotodeli, Rafi Alzues Sugiarti, Eni Muslimin, Ahmad Novi Admi, Ratna Isnanita Arafat, Andril Kim, Hyun-Joong Sapuan, S. M. Kosasih, Engkos Achmad |
| author_sort | Rahmadiawan, Dieter |
| building | UPM Institutional Repository |
| collection | Online Access |
| description | Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication. TOBC powders are sonicated with various powers of 250, 500, and 750 W for 20 min without any other substance. It was proved that increasing the ultrasonication power level resulted in a significant improvement in the properties of the film. The ultrasonication of 750 W increased tensile strength by 85, toughness by 308, light transmittance by 542, and electrical conductivity by 174 compared to the nonsonicated film. A light-emitting diode connected to a power source through this sonicated film was much brighter than that connected via a nonsonicated film. For the first time, this study reports the preparation of electrically conductive, transparent, strong, and bendable pure TOBC films by increasing ultrasonic power for environmentally friendly electronic devices application. |
| first_indexed | 2025-11-15T13:54:21Z |
| format | Article |
| id | upm-106589 |
| institution | Universiti Putra Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-15T13:54:21Z |
| publishDate | 2023 |
| publisher | Multidisciplinary Digital Publishing Institute |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | upm-1065892024-08-06T06:49:20Z http://psasir.upm.edu.my/id/eprint/106589/ A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power Rahmadiawan, Dieter Abral, Hairul Kotodeli, Rafi Alzues Sugiarti, Eni Muslimin, Ahmad Novi Admi, Ratna Isnanita Arafat, Andril Kim, Hyun-Joong Sapuan, S. M. Kosasih, Engkos Achmad Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication. TOBC powders are sonicated with various powers of 250, 500, and 750 W for 20 min without any other substance. It was proved that increasing the ultrasonication power level resulted in a significant improvement in the properties of the film. The ultrasonication of 750 W increased tensile strength by 85, toughness by 308, light transmittance by 542, and electrical conductivity by 174 compared to the nonsonicated film. A light-emitting diode connected to a power source through this sonicated film was much brighter than that connected via a nonsonicated film. For the first time, this study reports the preparation of electrically conductive, transparent, strong, and bendable pure TOBC films by increasing ultrasonic power for environmentally friendly electronic devices application. Multidisciplinary Digital Publishing Institute 2023 Article PeerReviewed Rahmadiawan, Dieter and Abral, Hairul and Kotodeli, Rafi Alzues and Sugiarti, Eni and Muslimin, Ahmad Novi and Admi, Ratna Isnanita and Arafat, Andril and Kim, Hyun-Joong and Sapuan, S. M. and Kosasih, Engkos Achmad (2023) A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power. Polymers, 15 (3). pp. 1-16. ISSN 2073-4360 https://www.mdpi.com/2073-4360/15/3/643 10.3390/polym15030643 |
| spellingShingle | Rahmadiawan, Dieter Abral, Hairul Kotodeli, Rafi Alzues Sugiarti, Eni Muslimin, Ahmad Novi Admi, Ratna Isnanita Arafat, Andril Kim, Hyun-Joong Sapuan, S. M. Kosasih, Engkos Achmad A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title | A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title_full | A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title_fullStr | A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title_full_unstemmed | A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title_short | A novel highly conductive, transparent, and strong pure-cellulose film from TEMPO-oxidized bacterial cellulose by increasing sonication power |
| title_sort | novel highly conductive, transparent, and strong pure-cellulose film from tempo-oxidized bacterial cellulose by increasing sonication power |
| url | http://psasir.upm.edu.my/id/eprint/106589/ http://psasir.upm.edu.my/id/eprint/106589/ http://psasir.upm.edu.my/id/eprint/106589/ |