Effects of ultrasound-assisted enzymolysis on extraction of beta-glucan enriched lysates and cell wall of Saccharomyces cerevisiae
Saccharomyces cerevisiae is being used for long as a rich source of proteins, sugars, nucleotides, vitamins, and minerals. Yeast lysates from autolyzed and hydrolyzed yeast cells have found numerous applications in the food industry. This study explored the feasibility of producing yeast lysates usi...
| Main Authors: | Ismail, Azimah Shaik, Abbasiliasi, Sahar, Sreedharan, Dharni Kuhan, Lee, Chee Keong, Muthulakshmi, Lakshmanan, Tan, Joo Shun |
|---|---|
| Format: | Article |
| Published: |
Springer
2024
|
| Online Access: | http://psasir.upm.edu.my/id/eprint/105725/ |
Similar Items
Isolation Of Lactobacillus Brevis C23 For Production Of Bacteriocin-Like Inhibitory Substance Against Food Borne Pathogen, Listeria Monocytogenes
by: Sreedharan, Dharni Kuhan
Published: (2021)
by: Sreedharan, Dharni Kuhan
Published: (2021)
Effect of ultrasound on anaerobic fermentation by Saccharomyces Cerevisiae
by: Nusaibah, Ghazali
Published: (2013)
by: Nusaibah, Ghazali
Published: (2013)
Effects of supplementing baker's yeast (Saccharomyces cerevisiae) and yeast glucan on growth performance, nutrient digestibility and meat quality of broiler chicken
by: Mohamaddin, Nabila
Published: (2017)
by: Mohamaddin, Nabila
Published: (2017)
Administration of β-glucan (Saccharomyces cerevisiae) by oral feeding increases survival, growth and immune responses in Oreochromis spp. infected with Aeromonashydrophila
by: Hamid, Nur Hidayahanum, et al.
Published: (2012)
by: Hamid, Nur Hidayahanum, et al.
Published: (2012)
Production of ethanol by immobilized saccharomyces cerevisiae
by: Noordiana, Ariffin
Published: (2015)
by: Noordiana, Ariffin
Published: (2015)
Fermentation strategies for improving the production of bacteriocin-like inhibitory substances by Lactobacillus brevis C23 with nutrient supplementation, pH, and temperature variations
by: Sreedharan, Dharni Kuhan, et al.
Published: (2021)
by: Sreedharan, Dharni Kuhan, et al.
Published: (2021)
Responses of different strains of saccharomyces cerevisiae
to osmotic stress
by: Noorhisham Tan Kofli,, et al.
Published: (2006)
by: Noorhisham Tan Kofli,, et al.
Published: (2006)
Coculture of amylolytic strain and saccharomyces cerevisiae for ethanol production
by: Suriah Murthy, A/L Thanaveloo
Published: (2012)
by: Suriah Murthy, A/L Thanaveloo
Published: (2012)
Kinetics of biotransformation for citronellol production using saccharomyces cerevisiae.
by: Arifin, Aimi Aishah
Published: (2011)
by: Arifin, Aimi Aishah
Published: (2011)
Kinetics of invertase synthesis by Saccharomyces cerevisiae in synthetic medium
by: Ikram-ul-Haq, Ikram-ul-Haq, et al.
Published: (2006)
by: Ikram-ul-Haq, Ikram-ul-Haq, et al.
Published: (2006)
Genetic analyses of pre-meiotic DNA replication in Saccharomyces cerevisiae
by: Maddinapudi, Sri L P
Published: (2015)
by: Maddinapudi, Sri L P
Published: (2015)
Genes required to maintain telomeres in the absence of telomerase in Saccharomyces cerevisiae
by: Alotaibi, Mohammad Kdaimes H.
Published: (2012)
by: Alotaibi, Mohammad Kdaimes H.
Published: (2012)
Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae
by: Dick, Jeffrey
Published: (2009)
by: Dick, Jeffrey
Published: (2009)
Simultaneous saccharification and fermentation of ethanol production by using saccharomyces cerevisiae
by: Muhammad Naimmi, Ismail
Published: (2012)
by: Muhammad Naimmi, Ismail
Published: (2012)
Conversion of Waste Agriculture Biomass to Bioethanol by Recombinant Saccharomyces cerevisiae
by: Abu Saleh, Ahmed, et al.
Published: (2010)
by: Abu Saleh, Ahmed, et al.
Published: (2010)
Choline-based ionic liquids as media for the growth of Saccharomyces cerevisiae
by: Sivapragasam, Magaret, et al.
Published: (2019)
by: Sivapragasam, Magaret, et al.
Published: (2019)
Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae
by: Ting, Ya Han, et al.
Published: (2017)
by: Ting, Ya Han, et al.
Published: (2017)
Sugar utilization in fermentation of nipa frond sap by saccharomyces cerevisiae
by: Mohd Noor, Siti Fatimah, et al.
Published: (2020)
by: Mohd Noor, Siti Fatimah, et al.
Published: (2020)
Comparison of sweet sorghum and cassava for ethanol production by using saccharomyces cerevisiae
by: Nadir, Najiah, et al.
Published: (2009)
by: Nadir, Najiah, et al.
Published: (2009)
Rapid Assembly of yeast expression cassettes for phenylpropanoid biosynthesis in Saccharomyces cerevisiae
by: Ahmad Bazli Ramzi,, et al.
Published: (2018)
by: Ahmad Bazli Ramzi,, et al.
Published: (2018)
Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of saccharomyces cerevisiae.
by: Makky, Essam A., et al.
Published: (2021)
by: Makky, Essam A., et al.
Published: (2021)
Bioethanol production from cassava by fermentation process using Saccharomyces Cerevisiae
by: Rajandran, Kanagaraj
Published: (2013)
by: Rajandran, Kanagaraj
Published: (2013)
Assessing Growth Performance Of Saccharomyces Cerevisiae In Stillage From Ethanol Fermentation
by: Balasupramaniam, Komathi, et al.
Published: (2011)
by: Balasupramaniam, Komathi, et al.
Published: (2011)
Effect of dilution rate on ethanol production by Saccharomyces cerevisiae(wild strain).
by: Abdul Samah, Othman, et al.
Published: (1990)
by: Abdul Samah, Othman, et al.
Published: (1990)
Comparison of yeast (Saccharomyces cerevisiae) fermentation between honey and commercial sugars
by: Osman, Nur Atiqah
Published: (2015)
by: Osman, Nur Atiqah
Published: (2015)
Glucose utilization of mucuna bracteata sap by saccharomyces cerevisiae in fermentation process
by: Mohd Noor, Siti Fatimah, et al.
Published: (2020)
by: Mohd Noor, Siti Fatimah, et al.
Published: (2020)
Combined effects of added beta glucan and black tea in breads on starch functionality
by: M. Jalil, Abbe Maleyki, et al.
Published: (2015)
by: M. Jalil, Abbe Maleyki, et al.
Published: (2015)
Combined effects of added beta glucan and black tea in breads on starch functionality
by: M Jalil, A., et al.
Published: (2015)
by: M Jalil, A., et al.
Published: (2015)
Apparent ploidy effects on silencing are post-transcriptional at HML and telomeres in saccharomyces cerevisiae
by: McLaughlan, Jenny M., et al.
Published: (2012)
by: McLaughlan, Jenny M., et al.
Published: (2012)
Screening of non- Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation
by: Oshoma, Cyprian E., et al.
Published: (2015)
by: Oshoma, Cyprian E., et al.
Published: (2015)
A transcriptomic approach to pigs at weaning: a role for Saccharomyces cerevisiae boulardii?
by: Watts, Oliver
Published: (2018)
by: Watts, Oliver
Published: (2018)
Single-step bioconversion of starch to bioethanol by the
coculture of ragi tapai and saccharomyces cerevisiae
by: Azmi, Azlin Suhaida, et al.
Published: (2009)
by: Azmi, Azlin Suhaida, et al.
Published: (2009)
AT-303:Comparison of Sago and Sweet Sorghum for Ethanol production using Saccharomyces Cerevisiae
by: Kamaruddin, Mohd Hider, et al.
Published: (2012)
by: Kamaruddin, Mohd Hider, et al.
Published: (2012)
Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering
by: Liu, Z., et al.
Published: (2014)
by: Liu, Z., et al.
Published: (2014)
Optimization of bioethanol from oil palm frond juice by using saccharomyces cerevisiae
by: Siti Hajar, Mat Zani
Published: (2018)
by: Siti Hajar, Mat Zani
Published: (2018)
Supplementation of mineral compounds in sago hampas hydrolysate for bioethanol production by saccharomyces cerevisiae
by: Ullifah, Binti Masykuri
Published: (2013)
by: Ullifah, Binti Masykuri
Published: (2013)
Production Of Ethanol By Genetically Modified Saccharomyces Cerevisiae Using Sago Starch As Substrate
by: Ang, Dek Chang
Published: (2001)
by: Ang, Dek Chang
Published: (2001)
Bioconversion of Gelatinised Sago Starch to Fermentable Sugar Using Recombinant Saccharomyces Cerevisiae
by: Mohamad Nazri, Azlian
Published: (2004)
by: Mohamad Nazri, Azlian
Published: (2004)
Stochastic Modelling Of Bioethanol Fermentation By Saccharomyces Cerevisiae Grown In Oil Palm Residues
by: Samsudin , Mohd Dinie Muhaimin
Published: (2015)
by: Samsudin , Mohd Dinie Muhaimin
Published: (2015)
Enzymatic hydrolysis of spent saccharomyces cerevisiae derived from sago bioethanol fermentation
by: Nik, Nur Aziati Mahmod, et al.
Published: (2023)
by: Nik, Nur Aziati Mahmod, et al.
Published: (2023)
Similar Items
-
Isolation Of Lactobacillus Brevis C23 For Production Of Bacteriocin-Like Inhibitory Substance Against Food Borne Pathogen, Listeria Monocytogenes
by: Sreedharan, Dharni Kuhan
Published: (2021) -
Effect of ultrasound on anaerobic fermentation by Saccharomyces Cerevisiae
by: Nusaibah, Ghazali
Published: (2013) -
Effects of supplementing baker's yeast (Saccharomyces cerevisiae) and yeast glucan on growth performance, nutrient digestibility and meat quality of broiler chicken
by: Mohamaddin, Nabila
Published: (2017) -
Administration of β-glucan (Saccharomyces cerevisiae) by oral feeding increases survival, growth and immune responses in Oreochromis spp. infected with Aeromonashydrophila
by: Hamid, Nur Hidayahanum, et al.
Published: (2012) -
Production of ethanol by immobilized saccharomyces cerevisiae
by: Noordiana, Ariffin
Published: (2015)