| Summary: | The conversion of CO2 into synthetic natural gas via methanation reaction has been gaining more attention. The development of active and stable catalysts at relatively low reaction temperatures is a critical issue to be addressed. Highly porous metal-organic framework (MOF) material, ZIF-67 doped with 1–12 wt% of nickel, was prepared via the wet-impregnation method. The catalytic test was started with in situ reductions of 0.05 g of catalyst. The reaction was performed at the temperature range of 200–400 °C, with a flow rate of 108,000 mL g−1 h−1 using a feed gas mixture (CO2:H2:N2) in a 1:4:5 ratio. Physicochemical characterisation showed that a highly porous and uniformly dispersed Ni-added ZIF-67-based catalyst was obtained and exhibited excellent catalytic activity in CO2 conversion. Preliminary catalytic testing showed that the 8 wt% ZIF-67 catalyst was very active in methanation reactions, with CO2 conversion of ∼56 % and CH4 selectivity of ∼96 % at 300 °C. Furthermore, the catalyst was very stable and maintained high catalytic activity (conversion ∼53 %, selectivity ∼94 %) without any sign of deactivation for 500 h of methanation reaction. Hence, the MOF-based Ni/ZIF-67 catalyst showed excellent potential to be explored as an effective methanation catalyst, and further investigation of the reaction parameters could lead to exceptional catalytic performance.
|