Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite

The presence of fibres and fillers in a composite can be efficiently arrest crack either at the macro or micro levels. In this work, woven jute and carbon fibres were arranged alternately in polylactic acid (PLA) composite. Graphene or nanoclay was embedded into the PLA matrix to make a polymer n...

Full description

Bibliographic Details
Main Author: Sairy, Nur Aqilah
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/104120/
http://psasir.upm.edu.my/id/eprint/104120/1/NUR%20AQILAH%20BINTI%20SAIRY%20-%20IR.pdf
_version_ 1848864199234551808
author Sairy, Nur Aqilah
author_facet Sairy, Nur Aqilah
author_sort Sairy, Nur Aqilah
building UPM Institutional Repository
collection Online Access
description The presence of fibres and fillers in a composite can be efficiently arrest crack either at the macro or micro levels. In this work, woven jute and carbon fibres were arranged alternately in polylactic acid (PLA) composite. Graphene or nanoclay was embedded into the PLA matrix to make a polymer nanocomposite. Fibre-reinforced polymer composites were prepared by varying the concentration (1, 3, 5wt%) of graphene or nanoclay in the PLA matrix. The alternate woven jute and carbon fibres aere then bound with the PLA nanocomposite. The influence of graphene or nanoclay concentration and the presence of woven fibres in the composite were quantified by flexural analysis. Flexural strength and flexural modulus were found to increase at 3wt% of nanofiller concentration for graphene/jute/PLA and nanoclay/jute/PLA nanocomposites with the increments up to 37% and 31%, respectively. Lowvelocity impact revealed that PLA/TJ/C/G1, PLA/TJ/C/G3, and PLA/TJ/C/G1 have the highest force value for 7J, 10J, and 13J, respectively. These three optimum values for each energy indicate that the closed curve results from the striker’s inability to penetrate the specimen. Thus, it was assumed that the lower loading of graphene could withstand the impact energy of 7J, 10J, and 13J. FTIR was used to determine the interaction between PLA and nanofillers. Morphology observation by Scanning Electron Microscopy (SEM) was done to investigate the fractured surface of the hybrid jute/carbon fibres reinforced PLA nanocomposite.
first_indexed 2025-11-15T13:45:01Z
format Thesis
id upm-104120
institution Universiti Putra Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T13:45:01Z
publishDate 2021
recordtype eprints
repository_type Digital Repository
spelling upm-1041202023-07-12T08:28:33Z http://psasir.upm.edu.my/id/eprint/104120/ Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite Sairy, Nur Aqilah The presence of fibres and fillers in a composite can be efficiently arrest crack either at the macro or micro levels. In this work, woven jute and carbon fibres were arranged alternately in polylactic acid (PLA) composite. Graphene or nanoclay was embedded into the PLA matrix to make a polymer nanocomposite. Fibre-reinforced polymer composites were prepared by varying the concentration (1, 3, 5wt%) of graphene or nanoclay in the PLA matrix. The alternate woven jute and carbon fibres aere then bound with the PLA nanocomposite. The influence of graphene or nanoclay concentration and the presence of woven fibres in the composite were quantified by flexural analysis. Flexural strength and flexural modulus were found to increase at 3wt% of nanofiller concentration for graphene/jute/PLA and nanoclay/jute/PLA nanocomposites with the increments up to 37% and 31%, respectively. Lowvelocity impact revealed that PLA/TJ/C/G1, PLA/TJ/C/G3, and PLA/TJ/C/G1 have the highest force value for 7J, 10J, and 13J, respectively. These three optimum values for each energy indicate that the closed curve results from the striker’s inability to penetrate the specimen. Thus, it was assumed that the lower loading of graphene could withstand the impact energy of 7J, 10J, and 13J. FTIR was used to determine the interaction between PLA and nanofillers. Morphology observation by Scanning Electron Microscopy (SEM) was done to investigate the fractured surface of the hybrid jute/carbon fibres reinforced PLA nanocomposite. 2021-08 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/104120/1/NUR%20AQILAH%20BINTI%20SAIRY%20-%20IR.pdf Sairy, Nur Aqilah (2021) Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite. Masters thesis, Universiti Putra Malaysia. Polymer engineering Polylactic acid Jute fiber
spellingShingle Polymer engineering
Polylactic acid
Jute fiber
Sairy, Nur Aqilah
Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title_full Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title_fullStr Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title_full_unstemmed Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title_short Effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
title_sort effect of nanofillers in jute/carbon hybrid reinforced polylactic acid composite
topic Polymer engineering
Polylactic acid
Jute fiber
url http://psasir.upm.edu.my/id/eprint/104120/
http://psasir.upm.edu.my/id/eprint/104120/1/NUR%20AQILAH%20BINTI%20SAIRY%20-%20IR.pdf