An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor

Herein, we report a non-enzymatic glucose sensor based on a metal-organic framework (MOF) as alternative approach for long-term glucose monitoring. Specifically, nickel-based MOFs were solvothermally synthesized using either 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) or 2-hydroxy-1,4-benzenedica...

Full description

Bibliographic Details
Main Authors: Daud, A.D., Lim, H.N., Ibrahim, I., Endot, N.A., Gowthaman, N.S.K., Jiang, Z.T., Cordova, Kyle E.
Format: Article
Published: Elsevier 2022
Online Access:http://psasir.upm.edu.my/id/eprint/100232/
_version_ 1848863269541904384
author Daud, A.D.
Lim, H.N.
Ibrahim, I.
Endot, N.A.
Gowthaman, N.S.K.
Jiang, Z.T.
Cordova, Kyle E.
author_facet Daud, A.D.
Lim, H.N.
Ibrahim, I.
Endot, N.A.
Gowthaman, N.S.K.
Jiang, Z.T.
Cordova, Kyle E.
author_sort Daud, A.D.
building UPM Institutional Repository
collection Online Access
description Herein, we report a non-enzymatic glucose sensor based on a metal-organic framework (MOF) as alternative approach for long-term glucose monitoring. Specifically, nickel-based MOFs were solvothermally synthesized using either 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) or 2-hydroxy-1,4-benzenedicarboxylic acid (H2BDC-OH), both of which were characterized by different physicochemical techniques. The electrochemical performance of both electrodes towards glucose sensing was investigated and Ni-BDC-NH2 exhibited a significantly better electrocatalytic behaviour towards oxidation of glucose than bare Ni-BDC or Ni-BDC-OH in an alkaline media. This was attributed to a favourable multi-layered sheet-like structure that allowed diffusion for entrapment of glucose and the incorporation of –NH2 functional groups attached to the BDC linker which, were responsible for electrochemical adsorption of glucose molecules. Ni-BDC-NH2 displayed a lower detection limit (3.82 μM), higher stability (>180 days), and remarkable sensitivity (308 μA mM−1 cm−2). Additionally, a molecular sieve effect for Ni-BDC-NH2 led to a noteworthy anti-interference ability and the sensor displays a fast response time of 5.4 s towards glucose detection. These results indicate that the as-synthesized non-enzymatic glucose sensor operates with a longer lifetime and is viable for use as an intensive monitoring system.
first_indexed 2025-11-15T13:30:14Z
format Article
id upm-100232
institution Universiti Putra Malaysia
institution_category Local University
last_indexed 2025-11-15T13:30:14Z
publishDate 2022
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling upm-1002322024-07-11T04:09:06Z http://psasir.upm.edu.my/id/eprint/100232/ An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor Daud, A.D. Lim, H.N. Ibrahim, I. Endot, N.A. Gowthaman, N.S.K. Jiang, Z.T. Cordova, Kyle E. Herein, we report a non-enzymatic glucose sensor based on a metal-organic framework (MOF) as alternative approach for long-term glucose monitoring. Specifically, nickel-based MOFs were solvothermally synthesized using either 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) or 2-hydroxy-1,4-benzenedicarboxylic acid (H2BDC-OH), both of which were characterized by different physicochemical techniques. The electrochemical performance of both electrodes towards glucose sensing was investigated and Ni-BDC-NH2 exhibited a significantly better electrocatalytic behaviour towards oxidation of glucose than bare Ni-BDC or Ni-BDC-OH in an alkaline media. This was attributed to a favourable multi-layered sheet-like structure that allowed diffusion for entrapment of glucose and the incorporation of –NH2 functional groups attached to the BDC linker which, were responsible for electrochemical adsorption of glucose molecules. Ni-BDC-NH2 displayed a lower detection limit (3.82 μM), higher stability (>180 days), and remarkable sensitivity (308 μA mM−1 cm−2). Additionally, a molecular sieve effect for Ni-BDC-NH2 led to a noteworthy anti-interference ability and the sensor displays a fast response time of 5.4 s towards glucose detection. These results indicate that the as-synthesized non-enzymatic glucose sensor operates with a longer lifetime and is viable for use as an intensive monitoring system. Elsevier 2022-09-15 Article PeerReviewed Daud, A.D. and Lim, H.N. and Ibrahim, I. and Endot, N.A. and Gowthaman, N.S.K. and Jiang, Z.T. and Cordova, Kyle E. (2022) An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor. Journal of Electroanalytical Chemistry, 921. art. no. 116676. pp. 1-9. ISSN 1572-6657 https://www.sciencedirect.com/science/article/pii/S1572665722006683 10.1016/j.jelechem.2022.116676
spellingShingle Daud, A.D.
Lim, H.N.
Ibrahim, I.
Endot, N.A.
Gowthaman, N.S.K.
Jiang, Z.T.
Cordova, Kyle E.
An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title_full An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title_fullStr An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title_full_unstemmed An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title_short An effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
title_sort effective metal-organic framework-based electrochemical non-enzymatic glucose sensor
url http://psasir.upm.edu.my/id/eprint/100232/
http://psasir.upm.edu.my/id/eprint/100232/
http://psasir.upm.edu.my/id/eprint/100232/