A hybrid spiking neural network model for multivariate data classification and visualization.

This study proposes a hybrid model of Self-Organizing Map with modified adaptive coordinates (SOM-AC) and Spiking Neural Network (SNN) for multivariate spatial and temporal data visualization and classification. SOM is one of the most prominent unsupervised learning algorithms. Recently, many extens...

Full description

Bibliographic Details
Main Authors: Ming, Leong Yii, Teh, Chee Siong, Chen, Chwen Jen
Format: Proceeding
Language:English
Published: 2011
Subjects:
Online Access:http://ir.unimas.my/id/eprint/9976/
http://ir.unimas.my/id/eprint/9976/1/A%20hybrid.pdf
_version_ 1848836684912787456
author Ming, Leong Yii
Teh, Chee Siong
Chen, Chwen Jen
author_facet Ming, Leong Yii
Teh, Chee Siong
Chen, Chwen Jen
author_sort Ming, Leong Yii
building UNIMAS Institutional Repository
collection Online Access
description This study proposes a hybrid model of Self-Organizing Map with modified adaptive coordinates (SOM-AC) and Spiking Neural Network (SNN) for multivariate spatial and temporal data visualization and classification. SOM is one of the most prominent unsupervised learning algorithms. Recently, many extensions for SOM have been proposed for temporal processing. However, none of the extensions uses spikes as means of information processing. SNN has potential for qualitative advancements in both biological relevancy and computational power. Therefore, this hybrid learning model is proposed to harness the advantages of both SOM-AC and SNN to produce intuitive multivariate data classification and visualization. Empirical studies of the hybrid model using synthetic and benchmarking datasets yielded promising classification accuracy and intuitive rich visualization.
first_indexed 2025-11-15T06:27:41Z
format Proceeding
id unimas-9976
institution Universiti Malaysia Sarawak
institution_category Local University
language English
last_indexed 2025-11-15T06:27:41Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling unimas-99762022-08-23T03:17:53Z http://ir.unimas.my/id/eprint/9976/ A hybrid spiking neural network model for multivariate data classification and visualization. Ming, Leong Yii Teh, Chee Siong Chen, Chwen Jen L Education (General) T Technology (General) This study proposes a hybrid model of Self-Organizing Map with modified adaptive coordinates (SOM-AC) and Spiking Neural Network (SNN) for multivariate spatial and temporal data visualization and classification. SOM is one of the most prominent unsupervised learning algorithms. Recently, many extensions for SOM have been proposed for temporal processing. However, none of the extensions uses spikes as means of information processing. SNN has potential for qualitative advancements in both biological relevancy and computational power. Therefore, this hybrid learning model is proposed to harness the advantages of both SOM-AC and SNN to produce intuitive multivariate data classification and visualization. Empirical studies of the hybrid model using synthetic and benchmarking datasets yielded promising classification accuracy and intuitive rich visualization. 2011 Proceeding PeerReviewed text en http://ir.unimas.my/id/eprint/9976/1/A%20hybrid.pdf Ming, Leong Yii and Teh, Chee Siong and Chen, Chwen Jen (2011) A hybrid spiking neural network model for multivariate data classification and visualization. In: 2011 7th International Conference on Information Technology in Asia, 12-13 July 2011, Sarawak,. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5999509&tag=1
spellingShingle L Education (General)
T Technology (General)
Ming, Leong Yii
Teh, Chee Siong
Chen, Chwen Jen
A hybrid spiking neural network model for multivariate data classification and visualization.
title A hybrid spiking neural network model for multivariate data classification and visualization.
title_full A hybrid spiking neural network model for multivariate data classification and visualization.
title_fullStr A hybrid spiking neural network model for multivariate data classification and visualization.
title_full_unstemmed A hybrid spiking neural network model for multivariate data classification and visualization.
title_short A hybrid spiking neural network model for multivariate data classification and visualization.
title_sort hybrid spiking neural network model for multivariate data classification and visualization.
topic L Education (General)
T Technology (General)
url http://ir.unimas.my/id/eprint/9976/
http://ir.unimas.my/id/eprint/9976/
http://ir.unimas.my/id/eprint/9976/1/A%20hybrid.pdf