Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology

The relationship between climate variability and rainfall oxygen isotopic (δ18O) variability is poorly constrained, especially in the tropics, where many key paleoclimate records rely on past rainfall isotopes as proxies for hydroclimate. Here we present a daily-resolved, 5-yr-long timeseries of rai...

Full description

Bibliographic Details
Main Authors: Moerman, Jessica W., Cobb, Kim M., Adkins, Jess F., Sodemann, Harald, Clark, Brian, Andrew Alex, anak Tuen
Format: Article
Language:English
Published: Elsevier 2013
Subjects:
Online Access:http://ir.unimas.my/id/eprint/16349/
http://ir.unimas.my/id/eprint/16349/1/Diurnal%20to%20interannual%20rainfall%20%CE%B418O%20variations%20in%20northern%20Borneo%20driven%20by%20regional%20hydrology%20%28abstrak%29.pdf
_version_ 1848838044389474304
author Moerman, Jessica W.
Cobb, Kim M.
Adkins, Jess F.
Sodemann, Harald
Clark, Brian
Andrew Alex, anak Tuen
author_facet Moerman, Jessica W.
Cobb, Kim M.
Adkins, Jess F.
Sodemann, Harald
Clark, Brian
Andrew Alex, anak Tuen
author_sort Moerman, Jessica W.
building UNIMAS Institutional Repository
collection Online Access
description The relationship between climate variability and rainfall oxygen isotopic (δ18O) variability is poorly constrained, especially in the tropics, where many key paleoclimate records rely on past rainfall isotopes as proxies for hydroclimate. Here we present a daily-resolved, 5-yr-long timeseries of rainfall δ18O from Gunung Mulu National Park, located in northern Borneo (4°N, 114°E) in the heart of the West Pacific Warm Pool, and compare it to local and regional climatic variables. Daily rainfall δ18O values range from +0.7‰ to -18.5‰ and exhibit a weak but significant inverse relationship with daily local precipitation amount (R=-0.19, p<0.05), consistent with the tropical amount effect. Day-to-day δ18O variability at Mulu is best correlated to regional precipitation amount averaged over the preceding week (R=-0.64, p<0.01). The inverse relationship between Mulu rainfall δ18O and local (regional) precipitation amount increases with increased temporal averaging, reaching R=-0.56 (R=-0.72) on monthly timescales. Large, negative, multi-day rainfall δ18O anomalies of up to 16‰ occur every 30-90 days and are closely associated with wet phases of the intraseasonal Madden-Julian Oscillation. A weak, semi-annual seasonal cycle in rainfall δ18O of 2-3‰ bears little resemblance to seasonal precipitation variability, pointing to a complex sequence of moisture sources and/or trajectories over the course of the year. Interannual rainfall δ18O variations of 6-8‰ are significantly correlated with indices of the El Niño Southern Oscillation, with increased rainfall δ18O during relatively dry El Niño conditions, and vice versa during La Nina events. We find that Mulu rainfall δ18O outperforms Mulu precipitation amount as a tracer of basin-scale climate variability, highlighting the time- and space-integrative nature of rainfall δ18O. Taken together, our results suggest that rainfall δ18O variability at Mulu is significantly influenced by the strength of regional convective activity. As such, our study provides further empirical support for the interpretation of δ18O-based paleo-reconstructions from northern Borneo stalagmites as robust indicators of regional-scale hydroclimate variability, where higher δ18O reflects regional drying
first_indexed 2025-11-15T06:49:18Z
format Article
id unimas-16349
institution Universiti Malaysia Sarawak
institution_category Local University
language English
last_indexed 2025-11-15T06:49:18Z
publishDate 2013
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling unimas-163492017-05-22T01:31:16Z http://ir.unimas.my/id/eprint/16349/ Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology Moerman, Jessica W. Cobb, Kim M. Adkins, Jess F. Sodemann, Harald Clark, Brian Andrew Alex, anak Tuen GE Environmental Sciences The relationship between climate variability and rainfall oxygen isotopic (δ18O) variability is poorly constrained, especially in the tropics, where many key paleoclimate records rely on past rainfall isotopes as proxies for hydroclimate. Here we present a daily-resolved, 5-yr-long timeseries of rainfall δ18O from Gunung Mulu National Park, located in northern Borneo (4°N, 114°E) in the heart of the West Pacific Warm Pool, and compare it to local and regional climatic variables. Daily rainfall δ18O values range from +0.7‰ to -18.5‰ and exhibit a weak but significant inverse relationship with daily local precipitation amount (R=-0.19, p<0.05), consistent with the tropical amount effect. Day-to-day δ18O variability at Mulu is best correlated to regional precipitation amount averaged over the preceding week (R=-0.64, p<0.01). The inverse relationship between Mulu rainfall δ18O and local (regional) precipitation amount increases with increased temporal averaging, reaching R=-0.56 (R=-0.72) on monthly timescales. Large, negative, multi-day rainfall δ18O anomalies of up to 16‰ occur every 30-90 days and are closely associated with wet phases of the intraseasonal Madden-Julian Oscillation. A weak, semi-annual seasonal cycle in rainfall δ18O of 2-3‰ bears little resemblance to seasonal precipitation variability, pointing to a complex sequence of moisture sources and/or trajectories over the course of the year. Interannual rainfall δ18O variations of 6-8‰ are significantly correlated with indices of the El Niño Southern Oscillation, with increased rainfall δ18O during relatively dry El Niño conditions, and vice versa during La Nina events. We find that Mulu rainfall δ18O outperforms Mulu precipitation amount as a tracer of basin-scale climate variability, highlighting the time- and space-integrative nature of rainfall δ18O. Taken together, our results suggest that rainfall δ18O variability at Mulu is significantly influenced by the strength of regional convective activity. As such, our study provides further empirical support for the interpretation of δ18O-based paleo-reconstructions from northern Borneo stalagmites as robust indicators of regional-scale hydroclimate variability, where higher δ18O reflects regional drying Elsevier 2013-05 Article PeerReviewed text en http://ir.unimas.my/id/eprint/16349/1/Diurnal%20to%20interannual%20rainfall%20%CE%B418O%20variations%20in%20northern%20Borneo%20driven%20by%20regional%20hydrology%20%28abstrak%29.pdf Moerman, Jessica W. and Cobb, Kim M. and Adkins, Jess F. and Sodemann, Harald and Clark, Brian and Andrew Alex, anak Tuen (2013) Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth and Planetary Science Letters, 369. pp. 108-119. ISSN 0012-821X http://www.sciencedirect.com/science/article/pii/S0012821X13001350
spellingShingle GE Environmental Sciences
Moerman, Jessica W.
Cobb, Kim M.
Adkins, Jess F.
Sodemann, Harald
Clark, Brian
Andrew Alex, anak Tuen
Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title_full Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title_fullStr Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title_full_unstemmed Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title_short Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology
title_sort diurnal to interannual rainfall δ18o variations in northern borneo driven by regional hydrology
topic GE Environmental Sciences
url http://ir.unimas.my/id/eprint/16349/
http://ir.unimas.my/id/eprint/16349/
http://ir.unimas.my/id/eprint/16349/1/Diurnal%20to%20interannual%20rainfall%20%CE%B418O%20variations%20in%20northern%20Borneo%20driven%20by%20regional%20hydrology%20%28abstrak%29.pdf