Discovering User Experience Variables from Textusing Computational Semantics Approaches

Nielson Norman group defined user experience as, “all aspects of the end-user’s interaction with the company, its services, and its products”. Many researchers have investigated what criteria ensures good user experience. With the vast development in information technology, we could easily access...

Full description

Bibliographic Details
Main Author: Tan, Wendy Wei Syn
Format: Thesis
Language:English
Published: Universiti Malaysia Sarawak, (UNIMAS) 2015
Subjects:
Online Access:http://ir.unimas.my/id/eprint/10764/
http://ir.unimas.my/id/eprint/10764/1/Wendy%20T.pdf
_version_ 1848836854496886784
author Tan, Wendy Wei Syn
author_facet Tan, Wendy Wei Syn
author_sort Tan, Wendy Wei Syn
building UNIMAS Institutional Repository
collection Online Access
description Nielson Norman group defined user experience as, “all aspects of the end-user’s interaction with the company, its services, and its products”. Many researchers have investigated what criteria ensures good user experience. With the vast development in information technology, we could easily access to user generated data such as reviews that explain user experiences. However, mountainous of reviews provide too much information and at the same time contain noises. These motivate this study to present a novel solution to automatically analyze reviews and predict the underlying user experiences. We believe that this solution provides insight into the behavioral aspects of those reviews where most of the time, we cannot observed them directly. In our study, we have proposed a Computational Model for User Experience (CompUX) that able to predict user experiences from reviews. We have choosen five main user experiences: Perceived Ease of Use, Perceived Usefulness, Affects towards Technology, Social Influence, and Trust. We have created an UX semantic space to learn the semantic meaning relationship of words and documents by incorporating the state of the art distributional semantic models: Latent Semantic Analysis and Paragraph Vector as part of the CompUX. Next, by mapping reviews to their semantically similar measurement items (derived from behavioral science) using the UX semantic space, we could infer user experiences from reviews. Based on the results obtained, the model performed better than random prediction and we were able to achieve macro average F-Measure of 0.31.
first_indexed 2025-11-15T06:30:23Z
format Thesis
id unimas-10764
institution Universiti Malaysia Sarawak
institution_category Local University
language English
last_indexed 2025-11-15T06:30:23Z
publishDate 2015
publisher Universiti Malaysia Sarawak, (UNIMAS)
recordtype eprints
repository_type Digital Repository
spelling unimas-107642023-08-24T02:04:43Z http://ir.unimas.my/id/eprint/10764/ Discovering User Experience Variables from Textusing Computational Semantics Approaches Tan, Wendy Wei Syn T Technology (General) Nielson Norman group defined user experience as, “all aspects of the end-user’s interaction with the company, its services, and its products”. Many researchers have investigated what criteria ensures good user experience. With the vast development in information technology, we could easily access to user generated data such as reviews that explain user experiences. However, mountainous of reviews provide too much information and at the same time contain noises. These motivate this study to present a novel solution to automatically analyze reviews and predict the underlying user experiences. We believe that this solution provides insight into the behavioral aspects of those reviews where most of the time, we cannot observed them directly. In our study, we have proposed a Computational Model for User Experience (CompUX) that able to predict user experiences from reviews. We have choosen five main user experiences: Perceived Ease of Use, Perceived Usefulness, Affects towards Technology, Social Influence, and Trust. We have created an UX semantic space to learn the semantic meaning relationship of words and documents by incorporating the state of the art distributional semantic models: Latent Semantic Analysis and Paragraph Vector as part of the CompUX. Next, by mapping reviews to their semantically similar measurement items (derived from behavioral science) using the UX semantic space, we could infer user experiences from reviews. Based on the results obtained, the model performed better than random prediction and we were able to achieve macro average F-Measure of 0.31. Universiti Malaysia Sarawak, (UNIMAS) 2015 Thesis NonPeerReviewed text en http://ir.unimas.my/id/eprint/10764/1/Wendy%20T.pdf Tan, Wendy Wei Syn (2015) Discovering User Experience Variables from Textusing Computational Semantics Approaches. Masters thesis, Universiti Malaysia Sarawak, (UNIMAS).
spellingShingle T Technology (General)
Tan, Wendy Wei Syn
Discovering User Experience Variables from Textusing Computational Semantics Approaches
title Discovering User Experience Variables from Textusing Computational Semantics Approaches
title_full Discovering User Experience Variables from Textusing Computational Semantics Approaches
title_fullStr Discovering User Experience Variables from Textusing Computational Semantics Approaches
title_full_unstemmed Discovering User Experience Variables from Textusing Computational Semantics Approaches
title_short Discovering User Experience Variables from Textusing Computational Semantics Approaches
title_sort discovering user experience variables from textusing computational semantics approaches
topic T Technology (General)
url http://ir.unimas.my/id/eprint/10764/
http://ir.unimas.my/id/eprint/10764/1/Wendy%20T.pdf