Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation

Titanium dioxide (TiO2) is best known for its inexpensiveness and highly available as a photocatalyst. However, due to its wide-bandgap of 3.2 eV and the fast recombination of electron-hole pair, they have contributed to the inability to use the sunlight sufficiently as well as hindering for any rea...

Full description

Bibliographic Details
Main Author: Leong, Sheng Yau
Format: Undergraduates Project Papers
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/9456/
http://umpir.ump.edu.my/id/eprint/9456/1/24.Copper%20doped%20titanium%20dioxide%20%28TiO2%29%20nanoparticles%20for%20enhanced%20photocatalytic%20activity%20under%20visible%20light%20irradiation.pdf
_version_ 1848818495989481472
author Leong, Sheng Yau
author_facet Leong, Sheng Yau
author_sort Leong, Sheng Yau
building UMP Institutional Repository
collection Online Access
description Titanium dioxide (TiO2) is best known for its inexpensiveness and highly available as a photocatalyst. However, due to its wide-bandgap of 3.2 eV and the fast recombination of electron-hole pair, they have contributed to the inability to use the sunlight sufficiently as well as hindering for any reaction to happen. The objectives of the title are to synthesize a copper (Cu) doped TiO2, to inspect the photocatalytic activity of the synthesized TiO2 and to study the kinetic of the degradation of methylene blue (MB). A Cu salt is first synthesized using copper nitrate (Cu(NO3)) mixed in the glycerol phase. The preparation of TiO2 was carried out by the sol-gel method and the resulted Cu salt is added into it to in a 10 wt.% Cu/TiO2 manner. The resulted gel was aged for a day before it was heated up in the oven for 24 hours, which resulted in powder form. It was grinded and calcinated at 300 oC for an hour. The photocatalytic activity of the synthesized catalyst was inspected with the degradation of methylene blue (MB). As a result, the photocatalytic activity had been increased and the K0 ((k0H/K0)+ k0 is 0.03236 mg L-1 min-1 while K0 is 9.32615 X 10-3 4L mg-1.
first_indexed 2025-11-15T01:38:35Z
format Undergraduates Project Papers
id ump-9456
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T01:38:35Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling ump-94562023-08-16T04:52:08Z http://umpir.ump.edu.my/id/eprint/9456/ Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation Leong, Sheng Yau TS Manufactures Titanium dioxide (TiO2) is best known for its inexpensiveness and highly available as a photocatalyst. However, due to its wide-bandgap of 3.2 eV and the fast recombination of electron-hole pair, they have contributed to the inability to use the sunlight sufficiently as well as hindering for any reaction to happen. The objectives of the title are to synthesize a copper (Cu) doped TiO2, to inspect the photocatalytic activity of the synthesized TiO2 and to study the kinetic of the degradation of methylene blue (MB). A Cu salt is first synthesized using copper nitrate (Cu(NO3)) mixed in the glycerol phase. The preparation of TiO2 was carried out by the sol-gel method and the resulted Cu salt is added into it to in a 10 wt.% Cu/TiO2 manner. The resulted gel was aged for a day before it was heated up in the oven for 24 hours, which resulted in powder form. It was grinded and calcinated at 300 oC for an hour. The photocatalytic activity of the synthesized catalyst was inspected with the degradation of methylene blue (MB). As a result, the photocatalytic activity had been increased and the K0 ((k0H/K0)+ k0 is 0.03236 mg L-1 min-1 while K0 is 9.32615 X 10-3 4L mg-1. 2013-04 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/9456/1/24.Copper%20doped%20titanium%20dioxide%20%28TiO2%29%20nanoparticles%20for%20enhanced%20photocatalytic%20activity%20under%20visible%20light%20irradiation.pdf Leong, Sheng Yau (2013) Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.
spellingShingle TS Manufactures
Leong, Sheng Yau
Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title_full Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title_fullStr Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title_full_unstemmed Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title_short Copper doped titanium dioxide (TiO2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
title_sort copper doped titanium dioxide (tio2) nanoparticles for enhanced photocatalytic activity under visible light irradiation
topic TS Manufactures
url http://umpir.ump.edu.my/id/eprint/9456/
http://umpir.ump.edu.my/id/eprint/9456/1/24.Copper%20doped%20titanium%20dioxide%20%28TiO2%29%20nanoparticles%20for%20enhanced%20photocatalytic%20activity%20under%20visible%20light%20irradiation.pdf