Detection and classification of intestinal parasites with bayesian-optimized model

Automated detection of intestinal parasites in medical imaging enhances diagnostic efficiency and reduces human error. This study evaluates object detection techniques using Faster R-CNN with different backbone architectures such as ResNet, RetinaNet, ResNext and YOLOv8 series for detecting Ascaris...

Full description

Bibliographic Details
Main Authors: Hamza, Haifa, Kamarul Hawari, Ghazali, Ahmad, Abubakar
Format: Article
Language:English
Published: The Science and Information (SAI) Organization Limited 2025
Subjects:
Online Access:https://umpir.ump.edu.my/id/eprint/45625/
Description
Summary:Automated detection of intestinal parasites in medical imaging enhances diagnostic efficiency and reduces human error. This study evaluates object detection techniques using Faster R-CNN with different backbone architectures such as ResNet, RetinaNet, ResNext and YOLOv8 series for detecting Ascaris lumbricoides and Trichuris trichiura in microscopic images. A dataset of 2000 images was split into training (1500), validation (300), and testing (200). Results show Faster R-CNN with RetinaNet achieves the highest Average Precision (AP) across varying Intersection over Union (IoU) thresholds, making it robust in feature extraction. However, YOLOv8 excels in real-time detection, with YOLOv8n (nano) providing the best trade-off between accuracy and computational efficiency. Bayesian Optimization further improves YOLOv8n, achieving an AP of 99.6% and an Average Recall (AR) of 99.7%, surpassing two-stage architectures. This study highlights the potential of deep learning for automated parasite detection, reducing reliance on manual microscopy. Future research should explore transformer-based models, self-supervised learning, and mobile deployment for real-world clinical applications.