Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction

Building energy efficiency is crucial for global sustainability efforts, with chillers representing major energy consumers in commercial buildings. Accurate prediction of chiller power consumption remains challenging due to complex operational parameters, with feature selection being critical for mo...

Full description

Bibliographic Details
Main Authors: Nor Farizan, Zakaria, Mohd Herwan, Sulaiman, Zuriani, Mustaffa
Format: Article
Language:English
Published: Elsevier LTD 2025
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/44263/
http://umpir.ump.edu.my/id/eprint/44263/1/Feature%20Optimization%20with%20Metaheuristics%20for%20Artificial%20Neural%20Network-based%20Chiller%20Power%20Prediction.pdf
_version_ 1848827065490472960
author Nor Farizan, Zakaria
Mohd Herwan, Sulaiman
Zuriani, Mustaffa
author_facet Nor Farizan, Zakaria
Mohd Herwan, Sulaiman
Zuriani, Mustaffa
author_sort Nor Farizan, Zakaria
building UMP Institutional Repository
collection Online Access
description Building energy efficiency is crucial for global sustainability efforts, with chillers representing major energy consumers in commercial buildings. Accurate prediction of chiller power consumption remains challenging due to complex operational parameters, with feature selection being critical for model performance. This study aims to develop an improved feature selection approach that enhances prediction accuracy while reducing computational complexity in chiller consumption forecasting. This paper presents a novel Evolutionary Mating Algorithm (EMA) hybridized with Artificial Neural Networks (ANN) for optimizing feature selection. The EMA-ANN approach was compared against other metaheuristic-ANN hybrid models using operational data from a commercial building's chiller system. EMA-ANN demonstrated superior prediction accuracy with the lowest Mean Absolute Error (0.2235), Root Mean Square Error (0.4150), and highest coefficient of determination (R² = 0.9689). The algorithm identified seven optimal features primarily comprising temperature and humidity parameters. The algorithm’s unique evolutionary mating mechanism with adaptive crossover rate (Cr = 0.85), enabled effective feature space exploration, resulting in a 38.3% reduction in RMSE and 6.0% improvement in R2 compared to models without feature selection. This research contributes a novel hybrid model, identifies key features for chiller power prediction, and establishes a benchmark for evaluating feature selection algorithms in building energy applications.
first_indexed 2025-11-15T03:54:47Z
format Article
id ump-44263
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:54:47Z
publishDate 2025
publisher Elsevier LTD
recordtype eprints
repository_type Digital Repository
spelling ump-442632025-04-08T01:27:46Z http://umpir.ump.edu.my/id/eprint/44263/ Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction Nor Farizan, Zakaria Mohd Herwan, Sulaiman Zuriani, Mustaffa QA75 Electronic computers. Computer science TK Electrical engineering. Electronics Nuclear engineering Building energy efficiency is crucial for global sustainability efforts, with chillers representing major energy consumers in commercial buildings. Accurate prediction of chiller power consumption remains challenging due to complex operational parameters, with feature selection being critical for model performance. This study aims to develop an improved feature selection approach that enhances prediction accuracy while reducing computational complexity in chiller consumption forecasting. This paper presents a novel Evolutionary Mating Algorithm (EMA) hybridized with Artificial Neural Networks (ANN) for optimizing feature selection. The EMA-ANN approach was compared against other metaheuristic-ANN hybrid models using operational data from a commercial building's chiller system. EMA-ANN demonstrated superior prediction accuracy with the lowest Mean Absolute Error (0.2235), Root Mean Square Error (0.4150), and highest coefficient of determination (R² = 0.9689). The algorithm identified seven optimal features primarily comprising temperature and humidity parameters. The algorithm’s unique evolutionary mating mechanism with adaptive crossover rate (Cr = 0.85), enabled effective feature space exploration, resulting in a 38.3% reduction in RMSE and 6.0% improvement in R2 compared to models without feature selection. This research contributes a novel hybrid model, identifies key features for chiller power prediction, and establishes a benchmark for evaluating feature selection algorithms in building energy applications. Elsevier LTD 2025 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/44263/1/Feature%20Optimization%20with%20Metaheuristics%20for%20Artificial%20Neural%20Network-based%20Chiller%20Power%20Prediction.pdf Nor Farizan, Zakaria and Mohd Herwan, Sulaiman and Zuriani, Mustaffa (2025) Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction. Journal of Building Engineering, 105 (112561). pp. 1-18. ISSN 2352-7102. (Published) https://doi.org/10.1016/j.jobe.2025.112561 https://doi.org/10.1016/j.jobe.2025.112561
spellingShingle QA75 Electronic computers. Computer science
TK Electrical engineering. Electronics Nuclear engineering
Nor Farizan, Zakaria
Mohd Herwan, Sulaiman
Zuriani, Mustaffa
Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title_full Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title_fullStr Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title_full_unstemmed Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title_short Feature optimization with metaheuristics for Artificial Neural Network-based chiller power prediction
title_sort feature optimization with metaheuristics for artificial neural network-based chiller power prediction
topic QA75 Electronic computers. Computer science
TK Electrical engineering. Electronics Nuclear engineering
url http://umpir.ump.edu.my/id/eprint/44263/
http://umpir.ump.edu.my/id/eprint/44263/
http://umpir.ump.edu.my/id/eprint/44263/
http://umpir.ump.edu.my/id/eprint/44263/1/Feature%20Optimization%20with%20Metaheuristics%20for%20Artificial%20Neural%20Network-based%20Chiller%20Power%20Prediction.pdf