Assessment of thermophysical properties of hybrid nanoparticles [Graphene Nanoplatelets (GNPs) and Cellulose Nanocrystal (CNC)] in a base fluid for heat transfer applications
This article comprehensively investigates single (GNP) and hybrid nanofluids (GNPs/CNC nanoparticles), including nanofluid preparation and thermophysical properties. Nanoparticles were characterized using field emission scanning electron microscope, transmission electron microscope and X-ray diffrac...
| Main Authors: | Sandhya, Madderla, Ramasamy, Devarajan, Kadirgama, Kumaran, Wan Sharuzi, Wan Harun, Saidur, Rahman Md |
|---|---|
| Format: | Article |
| Language: | English English |
| Published: |
Springer
2023
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/40771/ http://umpir.ump.edu.my/id/eprint/40771/1/Assessment%20of%20Thermophysical%20Properties%20of%20Hybrid.pdf http://umpir.ump.edu.my/id/eprint/40771/2/Assessment%20of%20thermophysical%20properties%20of%20hybrid%20nanoparticles%20%5BGraphene%20Nanoplatelets%20%28GNPs%29%20and%20Cellulose%20Nanocrystal%20%28CNC%29_ABS.pdf |
Similar Items
An approach for the optimization of thermal conductivity and viscosity of hybrid (Graphene Nanoplatelets, GNPs: Cellulose Nanocrystal, CNC) nanofluids using Response Surface Methodology (RSM)
by: Chong, Tak Yaw, et al.
Published: (2023)
by: Chong, Tak Yaw, et al.
Published: (2023)
An Approach for the optimization of thermal conductivity and viscosity of hybrid (Graphene Nanoplatelets, GNPs : Cellulose Nanocrystal, CNC) nanofluids using Response Surface Methodology (RSM)
by: Yaw, Chong Tak, et al.
Published: (2023)
by: Yaw, Chong Tak, et al.
Published: (2023)
Experimental study on properties of hybrid stable & surfactant-free nanofluids GNPs/CNCs (Graphene nanoplatelets/cellulose nanocrystal) in water/ethylene glycol mixture for heat transfer application
by: M., Sandhya, et al.
Published: (2022)
by: M., Sandhya, et al.
Published: (2022)
Development of water-ethylene glycol based graphene nanoplatelets/cellulose nanocrystal hybrid nanofluid as radiator coolants and its performance evaluation
by: Madderla, Sandhya
Published: (2023)
by: Madderla, Sandhya
Published: (2023)
Graphene nanoplatelets–cellulose nanocrystals in engine oil for automotive applications
by: G., Kadirgama, et al.
Published: (2022)
by: G., Kadirgama, et al.
Published: (2022)
Heat transfer enhancement by hybrid nano additives—Graphene nanoplatelets/cellulose nanocrystal for the automobile cooling system (Radiator)
by: Yaw, Chong Tak, et al.
Published: (2023)
by: Yaw, Chong Tak, et al.
Published: (2023)
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Assessing thermophysical properties of Nanostructured Cellulose Nano Crystal (CNC) and Graphene Nanoplatelets (GNP) Additives in Palm Oil-Based Heat Transfer Fluid
by: Kulandaivel, Sridhar, et al.
Published: (2024)
by: Kulandaivel, Sridhar, et al.
Published: (2024)
Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid
by: K., Kadirgama, et al.
Published: (2019)
by: K., Kadirgama, et al.
Published: (2019)
The effect of graphite flakes (GFs) and hybrid graphene nanoplatelets (GNPs) particles to the mechanical properties of epoxy composites
by: Nurhazwani, Abu Bakar, et al.
Published: (2020)
by: Nurhazwani, Abu Bakar, et al.
Published: (2020)
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Thermophysical properties and tribological behavior of hybrid cellulose nanocrystal copper (ii) oxide (cnc-cuo) as lubricant additives
by: Sakinah, Muhamad Hisham
Published: (2022)
by: Sakinah, Muhamad Hisham
Published: (2022)
Enhancing engine oil performance with graphene-cellulose nanoparticles: insights into thermophysical properties and tribological behavior
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
Prediction modelling for Cellulose Nanocrystal (CNC) dispersed in ethylene glycol- water mixture
by: D., Ramasamy, et al.
Published: (2019)
by: D., Ramasamy, et al.
Published: (2019)
An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC)
by: N. W., Awang, et al.
Published: (2019)
by: N. W., Awang, et al.
Published: (2019)
Elucidation and model development of thermal conductivity analysis for cellulose nanocrystal (CNC) based nanofluid
by: K., Kadirgama, et al.
Published: (2018)
by: K., Kadirgama, et al.
Published: (2018)
Improving the thermophysical properties of hybrid nanocellulose-copper (II) oxide (CNC-CuO) as a lubricant additives: A novel nanolubricant for tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil
by: N. W., Awang, et al.
Published: (2019)
by: N. W., Awang, et al.
Published: (2019)
Experimental investigation and empirical model development of thermal conductivity for cellulose nanocrystal (CNC) based nanofluid
by: D., Ramasamy, et al.
Published: (2017)
by: D., Ramasamy, et al.
Published: (2017)
Hybrid CNC–MXene nanolubricant for tribological application: Characterization, prediction, and optimization of thermophysical properties evaluation
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
Effects of temperature and concentration on thermophysical properties of TiO2-MWCNTs -doped graphene nanofluids
by: Zetty Akhtar, Abdul Malek, et al.
Published: (2021)
by: Zetty Akhtar, Abdul Malek, et al.
Published: (2021)
Utilization of cellulose nanocrystals (CNC) as a filler for chitosan-based films for chili peppers packaging
by: Alanas, Edith, et al.
Published: (2021)
by: Alanas, Edith, et al.
Published: (2021)
High heat transfer using hybrid engine coolant
by: Devarajan, Ramasamy, et al.
Published: (2021)
by: Devarajan, Ramasamy, et al.
Published: (2021)
Prediction and Optimization of Thermophysical Properties of Hybrid Cellulose Nanocrystal-Copper (II) Oxide Nanolubricant for Tribology Application
by: Sakinah, Hisham, et al.
Published: (2023)
by: Sakinah, Hisham, et al.
Published: (2023)
Heat transfer to graphene nanoplatelets and metaloxides-studies in thermophysical properties and particle characterization / Solangi Khalid Hussain
by: Solangi Khalid , Hussain
Published: (2016)
by: Solangi Khalid , Hussain
Published: (2016)
A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties
by: Sandhya, Madderla, et al.
Published: (2021)
by: Sandhya, Madderla, et al.
Published: (2021)
Hybrid cellulose nanocrystals and graphene oxide polysulfone membranes for copper removal
by: Siti Nurul Najiah, Abd Rasid, et al.
Published: (2022)
by: Siti Nurul Najiah, Abd Rasid, et al.
Published: (2022)
A short review of nano-cellulose preparation from textile spinning waste cotton
by: Mahamude, Abu Shadate Faisal, et al.
Published: (2021)
by: Mahamude, Abu Shadate Faisal, et al.
Published: (2021)
Analysis of dynamic viscosity via experiment and empirical correlation through response surface methodology (rsm) for cellulose nanocrystal (cnc) dispersed in ethylene glycol- water mixture
by: D., Ramasamy, et al.
Published: (2018)
by: D., Ramasamy, et al.
Published: (2018)
Fundamental study of hybrid graphene oxide and nanofibrillated cellulose for aircraft wings application
by: Kumaran, Kadirgama, et al.
by: Kumaran, Kadirgama, et al.
Thermophysical Properties Measurement of Nano Cellulose in Ethylene Glycol/Water
by: Ramachandran, Kaaliarasan, et al.
Published: (2017)
by: Ramachandran, Kaaliarasan, et al.
Published: (2017)
Investigation of Dynamic Viscosity Through Experiment and Correlation Determination through Response Surface Methodology for Cellulose Nanocrystal (Cnc) Dispersed in Ethylene Glycol-Water Mixture
by: D., Ramasamy, et al.
Published: (2017)
by: D., Ramasamy, et al.
Published: (2017)
Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids
by: K., Farhana, et al.
Published: (2021)
by: K., Farhana, et al.
Published: (2021)
Effective dispersion of graphene nanoplatelets in epoxy grout for structural rehabilitation
by: Ain Shahira, Kasmaon
Published: (2018)
by: Ain Shahira, Kasmaon
Published: (2018)
Effective dispersion of graphene nanoplatelets in epoxy grout for pipeline rehabilitation
by: Lim, Kar Sing, et al.
Published: (2018)
by: Lim, Kar Sing, et al.
Published: (2018)
Statistical approach for prediction of thermal properties of CNC and CNC-CuO nanolubricant using Response Surface Methodology (RSM)
by: Sakinah, Hisham, et al.
Published: (2019)
by: Sakinah, Hisham, et al.
Published: (2019)
Tensile properties of epoxy grout incorporating graphene nanoplatelets for pipeline repair
by: Zainal, Nurfarahin, et al.
Published: (2018)
by: Zainal, Nurfarahin, et al.
Published: (2018)
Innovative dispersion techniques of graphene nanoplatelets (GNPs) through mechanical stirring and ultrasonication: Impact on morphological, mechanical, and thermal properties of epoxy nanocomposites
by: Siddiqui, Vasi Uddin, et al.
Published: (2024)
by: Siddiqui, Vasi Uddin, et al.
Published: (2024)
Thermal performance of nanomaterial in solar collector: State-of-play for graphene
by: Mahamude, Abu Shadate Faisal, et al.
Published: (2021)
by: Mahamude, Abu Shadate Faisal, et al.
Published: (2021)
Green engine coolant (GEC): cellulose nanocrystals as engine coolant process
by: D., Ramasamy, et al.
Published: (2018)
by: D., Ramasamy, et al.
Published: (2018)
Similar Items
-
An approach for the optimization of thermal conductivity and viscosity of hybrid (Graphene Nanoplatelets, GNPs: Cellulose Nanocrystal, CNC) nanofluids using Response Surface Methodology (RSM)
by: Chong, Tak Yaw, et al.
Published: (2023) -
An Approach for the optimization of thermal conductivity and viscosity of hybrid (Graphene Nanoplatelets, GNPs : Cellulose Nanocrystal, CNC) nanofluids using Response Surface Methodology (RSM)
by: Yaw, Chong Tak, et al.
Published: (2023) -
Experimental study on properties of hybrid stable & surfactant-free nanofluids GNPs/CNCs (Graphene nanoplatelets/cellulose nanocrystal) in water/ethylene glycol mixture for heat transfer application
by: M., Sandhya, et al.
Published: (2022) -
Development of water-ethylene glycol based graphene nanoplatelets/cellulose nanocrystal hybrid nanofluid as radiator coolants and its performance evaluation
by: Madderla, Sandhya
Published: (2023) -
Graphene nanoplatelets–cellulose nanocrystals in engine oil for automotive applications
by: G., Kadirgama, et al.
Published: (2022)