Machine learning classification to detect unattended child in vehicle using sensor signal : A review

A significant number of children die each year in the United States and around the world as a result of being left in hot vehicles. Numerous studies aimed at reducing the number of unattended children in vehicles have employed a variety of strategies. The majority of studies use sensors to detect un...

Full description

Bibliographic Details
Main Authors: Ida Fadliza, Abu Zarin, Ngahzaifa, Ab Ghani, Syafiq Fauzi, Kamarulzaman
Format: Conference or Workshop Item
Language:English
English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/40372/
http://umpir.ump.edu.my/id/eprint/40372/1/Machine%20learning%20classification%20to%20detect%20unattended%20child.pdf
http://umpir.ump.edu.my/id/eprint/40372/2/Machine%20learning%20classification%20to%20detect%20unattended%20child%20in%20vehicle%20using%20sensor%20signal_A%20review_ABS.pdf
_version_ 1848826030337294336
author Ida Fadliza, Abu Zarin
Ngahzaifa, Ab Ghani
Syafiq Fauzi, Kamarulzaman
author_facet Ida Fadliza, Abu Zarin
Ngahzaifa, Ab Ghani
Syafiq Fauzi, Kamarulzaman
author_sort Ida Fadliza, Abu Zarin
building UMP Institutional Repository
collection Online Access
description A significant number of children die each year in the United States and around the world as a result of being left in hot vehicles. Numerous studies aimed at reducing the number of unattended children in vehicles have employed a variety of strategies. The majority of studies use sensors to detect unattended children, while only a few integrate machine learning with the sensors. The efficacy of a sensor's system is improved by machine learning. This paper reviews the implementation of machine learning classification in child detection systems and reviews the research conducted to detect unattended children. For the majority of the research, the machine learning algorithms SVM, KNN, and Random Forest effectively classified the occupants into a few classifications with accuracies greater than 90%.
first_indexed 2025-11-15T03:38:20Z
format Conference or Workshop Item
id ump-40372
institution Universiti Malaysia Pahang
institution_category Local University
language English
English
last_indexed 2025-11-15T03:38:20Z
publishDate 2023
publisher Institute of Electrical and Electronics Engineers Inc.
recordtype eprints
repository_type Digital Repository
spelling ump-403722024-04-16T04:17:16Z http://umpir.ump.edu.my/id/eprint/40372/ Machine learning classification to detect unattended child in vehicle using sensor signal : A review Ida Fadliza, Abu Zarin Ngahzaifa, Ab Ghani Syafiq Fauzi, Kamarulzaman QA75 Electronic computers. Computer science QA76 Computer software T Technology (General) TA Engineering (General). Civil engineering (General) A significant number of children die each year in the United States and around the world as a result of being left in hot vehicles. Numerous studies aimed at reducing the number of unattended children in vehicles have employed a variety of strategies. The majority of studies use sensors to detect unattended children, while only a few integrate machine learning with the sensors. The efficacy of a sensor's system is improved by machine learning. This paper reviews the implementation of machine learning classification in child detection systems and reviews the research conducted to detect unattended children. For the majority of the research, the machine learning algorithms SVM, KNN, and Random Forest effectively classified the occupants into a few classifications with accuracies greater than 90%. Institute of Electrical and Electronics Engineers Inc. 2023 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/40372/1/Machine%20learning%20classification%20to%20detect%20unattended%20child.pdf pdf en http://umpir.ump.edu.my/id/eprint/40372/2/Machine%20learning%20classification%20to%20detect%20unattended%20child%20in%20vehicle%20using%20sensor%20signal_A%20review_ABS.pdf Ida Fadliza, Abu Zarin and Ngahzaifa, Ab Ghani and Syafiq Fauzi, Kamarulzaman (2023) Machine learning classification to detect unattended child in vehicle using sensor signal : A review. In: 8th International Conference on Software Engineering and Computer Systems, ICSECS 2023 , 25-27 August 2023 , Penang. pp. 414-418. (192961). ISBN 979-835031093-1 (Published) https://doi.org/10.1109/ICSECS58457.2023.10256369
spellingShingle QA75 Electronic computers. Computer science
QA76 Computer software
T Technology (General)
TA Engineering (General). Civil engineering (General)
Ida Fadliza, Abu Zarin
Ngahzaifa, Ab Ghani
Syafiq Fauzi, Kamarulzaman
Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title_full Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title_fullStr Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title_full_unstemmed Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title_short Machine learning classification to detect unattended child in vehicle using sensor signal : A review
title_sort machine learning classification to detect unattended child in vehicle using sensor signal : a review
topic QA75 Electronic computers. Computer science
QA76 Computer software
T Technology (General)
TA Engineering (General). Civil engineering (General)
url http://umpir.ump.edu.my/id/eprint/40372/
http://umpir.ump.edu.my/id/eprint/40372/
http://umpir.ump.edu.my/id/eprint/40372/1/Machine%20learning%20classification%20to%20detect%20unattended%20child.pdf
http://umpir.ump.edu.my/id/eprint/40372/2/Machine%20learning%20classification%20to%20detect%20unattended%20child%20in%20vehicle%20using%20sensor%20signal_A%20review_ABS.pdf