CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study

Promoted potassium carbonate with glycine has been actively investigated as a chemical solvent for the removal of CO2. Though a vast number of studies have been reported for potassium carbonate, dynamic studies regarding this promoted solvent are not yet extensively reported in the literature. In th...

Full description

Bibliographic Details
Main Authors: Faezah, Isa, Haslinda, Zabiri, Noorlisa, Harun, Azmi, Mohammad Shariff
Format: Article
Language:English
Published: American Chemical Society 2022
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/40112/
http://umpir.ump.edu.my/id/eprint/40112/1/CO2%20Removal%20via%20an%20environmental%20green%20solvent%2C%20K2CO3-Glycine%20%28PCGLY%20%29.pdf
_version_ 1848825956532224000
author Faezah, Isa
Haslinda, Zabiri
Noorlisa, Harun
Azmi, Mohammad Shariff
author_facet Faezah, Isa
Haslinda, Zabiri
Noorlisa, Harun
Azmi, Mohammad Shariff
author_sort Faezah, Isa
building UMP Institutional Repository
collection Online Access
description Promoted potassium carbonate with glycine has been actively investigated as a chemical solvent for the removal of CO2. Though a vast number of studies have been reported for potassium carbonate, dynamic studies regarding this promoted solvent are not yet extensively reported in the literature. In this work, a steady-state simulation has been performed via an equilibrium stage model in Aspen Plus V10 using the experimental data of an absorber from the bench scale pilot plant (MINI CHAS) located in Universiti Teknologi PETRONAS. In this study, 15 wt % K2CO3 + 3 wt % glycine is utilized as the medium for absorption, and the operating pressure is set at 40 bar to imitate the natural gas treatment process. The removal observed from the pilot plant is about 75% and the steady-state simulation with a tuned vaporization efficiency managed to replicate a similar result. The transient analysis is performed via activating a flow-driven method, and the simulation is transferred into Aspen Dynamic. A simple control strategy using a proportional-integral (PI) controller is installed at the gas outlet to monitor the CO2 composition, and further disturbances are introduced at the inlet gas flow rate using a step test and ramp test. The controller is tuned using a trial-and-error method and a satisfactory response is achieved under varying changes in the inlet gas flow rate. Further investigation is carried out using the model predictive controller (MPC), in which 5000 data points are generated through pseudorandom binary sequence (PRBS) analysis for state-space model system identification. The state-space model identified as the best is then used to design the MPC controller. A disturbance rejection test on the MPC controller is conducted via changing the gas flow rate at 5% and a quick response is observed. In conclusion, both MPC and PI controllers managed to produce a good response once the disturbance was introduced within the CO2-potassium carbonate-glycine (PCGLY) system.
first_indexed 2025-11-15T03:37:10Z
format Article
id ump-40112
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:37:10Z
publishDate 2022
publisher American Chemical Society
recordtype eprints
repository_type Digital Repository
spelling ump-401122024-01-19T07:51:54Z http://umpir.ump.edu.my/id/eprint/40112/ CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study Faezah, Isa Haslinda, Zabiri Noorlisa, Harun Azmi, Mohammad Shariff QD Chemistry T Technology (General) TA Engineering (General). Civil engineering (General) TP Chemical technology Promoted potassium carbonate with glycine has been actively investigated as a chemical solvent for the removal of CO2. Though a vast number of studies have been reported for potassium carbonate, dynamic studies regarding this promoted solvent are not yet extensively reported in the literature. In this work, a steady-state simulation has been performed via an equilibrium stage model in Aspen Plus V10 using the experimental data of an absorber from the bench scale pilot plant (MINI CHAS) located in Universiti Teknologi PETRONAS. In this study, 15 wt % K2CO3 + 3 wt % glycine is utilized as the medium for absorption, and the operating pressure is set at 40 bar to imitate the natural gas treatment process. The removal observed from the pilot plant is about 75% and the steady-state simulation with a tuned vaporization efficiency managed to replicate a similar result. The transient analysis is performed via activating a flow-driven method, and the simulation is transferred into Aspen Dynamic. A simple control strategy using a proportional-integral (PI) controller is installed at the gas outlet to monitor the CO2 composition, and further disturbances are introduced at the inlet gas flow rate using a step test and ramp test. The controller is tuned using a trial-and-error method and a satisfactory response is achieved under varying changes in the inlet gas flow rate. Further investigation is carried out using the model predictive controller (MPC), in which 5000 data points are generated through pseudorandom binary sequence (PRBS) analysis for state-space model system identification. The state-space model identified as the best is then used to design the MPC controller. A disturbance rejection test on the MPC controller is conducted via changing the gas flow rate at 5% and a quick response is observed. In conclusion, both MPC and PI controllers managed to produce a good response once the disturbance was introduced within the CO2-potassium carbonate-glycine (PCGLY) system. American Chemical Society 2022-06-07 Article PeerReviewed pdf en cc_by_nc_nd_4 http://umpir.ump.edu.my/id/eprint/40112/1/CO2%20Removal%20via%20an%20environmental%20green%20solvent%2C%20K2CO3-Glycine%20%28PCGLY%20%29.pdf Faezah, Isa and Haslinda, Zabiri and Noorlisa, Harun and Azmi, Mohammad Shariff (2022) CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study. ACS Omega, 7 (22). pp. 18213-18228. ISSN 2470-1343. (Published) https://doi.org/10.1021/acsomega.1c06254 https://doi.org/10.1021/acsomega.1c06254
spellingShingle QD Chemistry
T Technology (General)
TA Engineering (General). Civil engineering (General)
TP Chemical technology
Faezah, Isa
Haslinda, Zabiri
Noorlisa, Harun
Azmi, Mohammad Shariff
CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title_full CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title_fullStr CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title_full_unstemmed CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title_short CO2 Removal via an environmental green solvent, K2CO3-Glycine (PCGLY ) : Investigative analysis of a dynamic and control study
title_sort co2 removal via an environmental green solvent, k2co3-glycine (pcgly ) : investigative analysis of a dynamic and control study
topic QD Chemistry
T Technology (General)
TA Engineering (General). Civil engineering (General)
TP Chemical technology
url http://umpir.ump.edu.my/id/eprint/40112/
http://umpir.ump.edu.my/id/eprint/40112/
http://umpir.ump.edu.my/id/eprint/40112/
http://umpir.ump.edu.my/id/eprint/40112/1/CO2%20Removal%20via%20an%20environmental%20green%20solvent%2C%20K2CO3-Glycine%20%28PCGLY%20%29.pdf