Building integrated photovoltaics powered electric vehicle charging with energy storage for residential building: Design, simulation, and assessment

Global warming poses a serious danger to the environment, animals, and the livelihoods of humans. The residential building sector & transportation sector has received significant attention in recent years due to GHG emissions. Electric vehicles (EVs) are poised to play an essential function in r...

Full description

Bibliographic Details
Main Authors: Khan, Sanjay, Sudhakar, K., Mohd Hazwan, Yusof
Format: Article
Language:English
English
Published: Elsevier Ltd 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/39872/
http://umpir.ump.edu.my/id/eprint/39872/1/Building%20integrated%20photovoltaics%20powered%20electric%20vehicle%20charging.pdf
http://umpir.ump.edu.my/id/eprint/39872/2/Building%20integrated%20photovoltaics%20powered%20electric%20vehicle%20charging%20%28intro%29.pdf
Description
Summary:Global warming poses a serious danger to the environment, animals, and the livelihoods of humans. The residential building sector & transportation sector has received significant attention in recent years due to GHG emissions. Electric vehicles (EVs) are poised to play an essential function in reducing dependency on non-renewable fuels and the transportation sector's environmental implications. On the other hand, the sustainability of EVs depends on their method of charging. This paper investigates the feasibility and design of a BIPV (building-integrated photovoltaic) powered EV charging system in a typical Malaysian house using solar energy to meet residential and EV charging demand. Three BIPV systems: Grid integrated with no battery, grid integrated with 75 % battery storage and grid integrated with 100 % battery storage have been designed, simulated, and assessed for the performance parameters. BIPV plant capacity of 5.6 kWp, roof inclination of 10°, and roof facing southeast and northwest have been sized for the proposed system. The annual energy output was 8.05MWh, 7.21MWh and 7.19MWh for the three scenarios. LCOE of the grid-connected system with no batteries showed the lowest value of 0.16RM/kwh, whereas a system with batteries had higher LCOE of 0.51RM/kWh and 0.65RM/kWh. The grid-connected system without batteries showed the highest GHG emission savings of 137,321,924 kgCO2e.