The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model

The mixed convection flow and heat transfer of the hybrid nanofluid over a shrinking sheet are investigated. Molybdenum disulphide (MoS2) and graphene oxide (GO) are employed as two hybrid nanoparticles while engine oil (EO) as the base fluid is considered. In this study, the Reiner-Philippoff model...

Full description

Bibliographic Details
Main Authors: Nur Syahidah, Nordin, Abdul Rahman, Mohd Kasim, Masyfu’ah, Mokhtar, Iskandar, Waini
Format: Article
Language:English
Published: Akademi Baru 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/39158/
http://umpir.ump.edu.my/id/eprint/39158/1/The%20mixed%20of%20hybrid%20nanofluid%20GO-MoS2.pdf
_version_ 1848825698413707264
author Nur Syahidah, Nordin
Abdul Rahman, Mohd Kasim
Masyfu’ah, Mokhtar
Iskandar, Waini
author_facet Nur Syahidah, Nordin
Abdul Rahman, Mohd Kasim
Masyfu’ah, Mokhtar
Iskandar, Waini
author_sort Nur Syahidah, Nordin
building UMP Institutional Repository
collection Online Access
description The mixed convection flow and heat transfer of the hybrid nanofluid over a shrinking sheet are investigated. Molybdenum disulphide (MoS2) and graphene oxide (GO) are employed as two hybrid nanoparticles while engine oil (EO) as the base fluid is considered. In this study, the Reiner-Philippoff model as one of non-Newtonian types is deliberated since it has the ability to function on three distinct types of fluids: viscous, shear thickening and shear thinning. The Reiner-Philippoff relation, the momentum and energy equations under Tiwari and Das model are all employed in the study. Influences from mass flux are also considered in the flow. Before computation using the bvp4c function in MATLAB, the respected equations are first converted into ordinary differential equation form using the similarity transformation. When the established and current models are discovered to be identical in a specific case, a direct comparative investigation is conducted to confirm the correctness of the current model. In addition, the present results are shown graphically and in tabular form. It is hypothesized that the presence of a hybrid nanofluid significantly affects the fluid characteristic and gives more satisfactory results than a single nanofluid. The skin friction coefficient and heat transfer rate of hybrid nanofluids are greater than the nanofluids. In terms of velocity and temperature profile, the reduction in velocity and the enhancement in temperature profile are caused by a rise in the Reiner-Philippoff parameter. The same outcome is also seen when the volume fraction of hybrid nanofluids increases.
first_indexed 2025-11-15T03:33:04Z
format Article
id ump-39158
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:33:04Z
publishDate 2023
publisher Akademi Baru
recordtype eprints
repository_type Digital Repository
spelling ump-391582023-11-03T01:13:09Z http://umpir.ump.edu.my/id/eprint/39158/ The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model Nur Syahidah, Nordin Abdul Rahman, Mohd Kasim Masyfu’ah, Mokhtar Iskandar, Waini QA Mathematics TJ Mechanical engineering and machinery The mixed convection flow and heat transfer of the hybrid nanofluid over a shrinking sheet are investigated. Molybdenum disulphide (MoS2) and graphene oxide (GO) are employed as two hybrid nanoparticles while engine oil (EO) as the base fluid is considered. In this study, the Reiner-Philippoff model as one of non-Newtonian types is deliberated since it has the ability to function on three distinct types of fluids: viscous, shear thickening and shear thinning. The Reiner-Philippoff relation, the momentum and energy equations under Tiwari and Das model are all employed in the study. Influences from mass flux are also considered in the flow. Before computation using the bvp4c function in MATLAB, the respected equations are first converted into ordinary differential equation form using the similarity transformation. When the established and current models are discovered to be identical in a specific case, a direct comparative investigation is conducted to confirm the correctness of the current model. In addition, the present results are shown graphically and in tabular form. It is hypothesized that the presence of a hybrid nanofluid significantly affects the fluid characteristic and gives more satisfactory results than a single nanofluid. The skin friction coefficient and heat transfer rate of hybrid nanofluids are greater than the nanofluids. In terms of velocity and temperature profile, the reduction in velocity and the enhancement in temperature profile are caused by a rise in the Reiner-Philippoff parameter. The same outcome is also seen when the volume fraction of hybrid nanofluids increases. Akademi Baru 2023-10 Article PeerReviewed pdf en cc_by_nc_4 http://umpir.ump.edu.my/id/eprint/39158/1/The%20mixed%20of%20hybrid%20nanofluid%20GO-MoS2.pdf Nur Syahidah, Nordin and Abdul Rahman, Mohd Kasim and Masyfu’ah, Mokhtar and Iskandar, Waini (2023) The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 108 (2). pp. 122-139. ISSN 2289-7879. (Published) https://doi.org/10.37934/arfmts.108.2.122139 https://doi.org/10.37934/arfmts.108.2.122139
spellingShingle QA Mathematics
TJ Mechanical engineering and machinery
Nur Syahidah, Nordin
Abdul Rahman, Mohd Kasim
Masyfu’ah, Mokhtar
Iskandar, Waini
The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title_full The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title_fullStr The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title_full_unstemmed The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title_short The mixed of hybrid nanofluid GO-MoS2/engine oil over a shrinking sheet with mass flux effect: Reiner-Philippoff model
title_sort mixed of hybrid nanofluid go-mos2/engine oil over a shrinking sheet with mass flux effect: reiner-philippoff model
topic QA Mathematics
TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/39158/
http://umpir.ump.edu.my/id/eprint/39158/
http://umpir.ump.edu.my/id/eprint/39158/
http://umpir.ump.edu.my/id/eprint/39158/1/The%20mixed%20of%20hybrid%20nanofluid%20GO-MoS2.pdf