Thermophysical properties and tribological behavior of hybrid cellulose nanocrystal copper (ii) oxide (cnc-cuo) as lubricant additives
Enhancement in the tribological behaviour of piston ring-cylinder liner contact is necessary to reduce the fuel consumption and elongate the engine time deterioration. A novel approach for improving the tribological system and thermophysical properties are dispersing nanoparticles in SAE 40 engine o...
| Main Author: | Sakinah, Muhamad Hisham |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2022
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/38457/ http://umpir.ump.edu.my/id/eprint/38457/1/Thermophysical%20properties%20and%20tribological%20behavior%20of%20hybrid%20cellulose%20nanocrystal%20copper%20%28ii%29%20oxide%20%28cnc-cuo%29.ir.pdf |
Similar Items
Prediction and Optimization of Thermophysical Properties of Hybrid Cellulose Nanocrystal-Copper (II) Oxide Nanolubricant for Tribology Application
by: Sakinah, Hisham, et al.
Published: (2023)
by: Sakinah, Hisham, et al.
Published: (2023)
Improving the thermophysical properties of hybrid nanocellulose-copper (II) oxide (CNC-CuO) as a lubricant additives: A novel nanolubricant for tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Assessment of thermophysical properties of hybrid nanoparticles [Graphene Nanoplatelets (GNPs) and Cellulose Nanocrystal (CNC)] in a base fluid for heat transfer applications
by: Sandhya, Madderla, et al.
Published: (2023)
by: Sandhya, Madderla, et al.
Published: (2023)
Exploring the Potentials of Copper Oxide and CNC Nanocoolants
by: Zurghiba, Hizanorhuda, et al.
Published: (2024)
by: Zurghiba, Hizanorhuda, et al.
Published: (2024)
Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil
by: N. W., Awang, et al.
Published: (2019)
by: N. W., Awang, et al.
Published: (2019)
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC)
by: N. W., Awang, et al.
Published: (2019)
by: N. W., Awang, et al.
Published: (2019)
Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids
by: Afzal, Asif, et al.
Published: (2019)
by: Afzal, Asif, et al.
Published: (2019)
Effect of using anti-wear and friction modifier-based additives on tribological performance of engine lubricants
by: Arman, Salih, et al.
Published: (2022)
by: Arman, Salih, et al.
Published: (2022)
Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive
by: M. A., Hassan, et al.
Published: (2016)
by: M. A., Hassan, et al.
Published: (2016)
Thermal and tribological properties enhancement of PVE lubricant modified with SiO2 and tio2 nanoparticles additive
by: Mohd Farid, Ismail, et al.
Published: (2023)
by: Mohd Farid, Ismail, et al.
Published: (2023)
An Approach for the optimization of thermal conductivity and viscosity of hybrid (Graphene Nanoplatelets, GNPs : Cellulose Nanocrystal, CNC) nanofluids using Response Surface Methodology (RSM)
by: Yaw, Chong Tak, et al.
Published: (2023)
by: Yaw, Chong Tak, et al.
Published: (2023)
Tribological Behaviour Study Of Aluminium Metal Matrix Composites For Automotive Brake Rotor Applications
by: Karim, Md. Rezaul
Published: (2007)
by: Karim, Md. Rezaul
Published: (2007)
Copper oxide/polyaniline nanocomposites-blended in palm oil hybrid nanofluid : Thermophysical behavior evaluation
by: Nurhanis Sofiah, Abd Ghafar, et al.
Published: (2023)
by: Nurhanis Sofiah, Abd Ghafar, et al.
Published: (2023)
Hybrid CNC–MXene nanolubricant for tribological application: Characterization, prediction, and optimization of thermophysical properties evaluation
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
Tribological (wear) properties of aluminum–silicon eutectic base alloy under dry sliding condition
by: Alias, Tuti Yasmin, et al.
Published: (2004)
by: Alias, Tuti Yasmin, et al.
Published: (2004)
Tribological behavior of waste cooking oil blended lubricant
by: Sakinah, Muhamad Hisham
Published: (2017)
by: Sakinah, Muhamad Hisham
Published: (2017)
Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability
by: Sakinah, Hisham, et al.
Published: (2024)
by: Sakinah, Hisham, et al.
Published: (2024)
Heat transfer enhancement by hybrid nano additives—Graphene nanoplatelets/cellulose nanocrystal for the automobile cooling system (Radiator)
by: Yaw, Chong Tak, et al.
Published: (2023)
by: Yaw, Chong Tak, et al.
Published: (2023)
Orthogonal cutting performance of vegetable-based lubricants via minimum quantity lubrication technique on AISI 316L
by: Amiril Sahab, Abdul Sani, et al.
Published: (2024)
by: Amiril Sahab, Abdul Sani, et al.
Published: (2024)
Statistical Approach to the Cellulose Nanocrystal Tribological Behavior on the Piston Liner Contact Using Full Factorial Design (FFD)
by: N. W., Awang, et al.
Published: (2023)
by: N. W., Awang, et al.
Published: (2023)
Design a CVT lubricant test device
by: Azlan, Mohd Azwir
Published: (2006)
by: Azlan, Mohd Azwir
Published: (2006)
Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid
by: K., Kadirgama, et al.
Published: (2019)
by: K., Kadirgama, et al.
Published: (2019)
The Tribology Evaluation on a Four-Ball Tribometer Lubricated by Al2O3/PAG Nanolubricants
by: Safril, Saka, et al.
Published: (2024)
by: Safril, Saka, et al.
Published: (2024)
Enhancing engine oil performance with graphene-cellulose nanoparticles: insights into thermophysical properties and tribological behavior
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
Hybrid nanocellulose-copper (II) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
Published: (2020)
by: Sakinah, Hisham, et al.
Published: (2020)
Hybrid nanocellulose-copper (ii) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
by: Sakinah, Hisham, et al.
Retardation of corrosion and tribological degradation of automotive materials in palm biodiesel / Sazzad Sharif
by: Sazzad , Sharif
Published: (2016)
by: Sazzad , Sharif
Published: (2016)
Enhancement of tribological behaviour and thermophysical properties of engine oil lubricant by Graphene/Co-Cr nanoparticle additives for preparation of stable nanolubricant
by: M., Sandhya, et al.
Published: (2021)
by: M., Sandhya, et al.
Published: (2021)
Determination of tool wear drilling process of aluminum 6061 and brass C3604 by using CNC robodrill machine
by: Hadi, Abdul Salaam, et al.
Published: (2024)
by: Hadi, Abdul Salaam, et al.
Published: (2024)
A Study on the Wear Resistance and Lubrication Properties of Mixed Engine Oils
by: Khairulafizal, Sultan Ali, et al.
Published: (2022)
by: Khairulafizal, Sultan Ali, et al.
Published: (2022)
Study of base pressure behavior in a suddenly expanded duct at supersonic mach number regimes using statistical analysis
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
Wear behavior of as-cast and heat treated triple particle size SiC reinforced aluminium metal matrix composites
by: Maleque, Md. Abdul, et al.
Published: (2009)
by: Maleque, Md. Abdul, et al.
Published: (2009)
A Tribological Analysis of PAO-Based Hybrid SiO2-TiO2 Nanolubricants
by: R.N.R, Ismail, et al.
Published: (2024)
by: R.N.R, Ismail, et al.
Published: (2024)
Statistical approach for prediction of thermal properties of CNC and CNC-CuO nanolubricant using Response Surface Methodology (RSM)
by: Sakinah, Hisham, et al.
Published: (2019)
by: Sakinah, Hisham, et al.
Published: (2019)
Characterization of lubricating grease formulated from waste engine oil
by: Nurul Waheeda, Abdu Rahman
Published: (2021)
by: Nurul Waheeda, Abdu Rahman
Published: (2021)
Prediction modelling for Cellulose Nanocrystal (CNC) dispersed in ethylene glycol- water mixture
by: D., Ramasamy, et al.
Published: (2019)
by: D., Ramasamy, et al.
Published: (2019)
Characterization and cellular internalization of spherical cellulose nanocrystals (CNC) into normal and cancerous fibroblasts
by: Shazali, Nur Aima Hafiza, et al.
Published: (2019)
by: Shazali, Nur Aima Hafiza, et al.
Published: (2019)
Exploring surfactant-enhanced stability and thermophysical characteristics of water-ethylene glycol-based Al2O3-TiO2 hybrid nanofluids
by: Wajiha Tasnim, Urmi, et al.
Published: (2023)
by: Wajiha Tasnim, Urmi, et al.
Published: (2023)
Similar Items
-
Prediction and Optimization of Thermophysical Properties of Hybrid Cellulose Nanocrystal-Copper (II) Oxide Nanolubricant for Tribology Application
by: Sakinah, Hisham, et al.
Published: (2023) -
Improving the thermophysical properties of hybrid nanocellulose-copper (II) oxide (CNC-CuO) as a lubricant additives: A novel nanolubricant for tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023) -
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023) -
Assessment of thermophysical properties of hybrid nanoparticles [Graphene Nanoplatelets (GNPs) and Cellulose Nanocrystal (CNC)] in a base fluid for heat transfer applications
by: Sandhya, Madderla, et al.
Published: (2023) -
Exploring the Potentials of Copper Oxide and CNC Nanocoolants
by: Zurghiba, Hizanorhuda, et al.
Published: (2024)