A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions

Recent advances in deep learning (DL) have shown that data-driven insights can be used in smart healthcare applications to improve the quality of life for patients. DL needs more data and diversity to build a more accurate system. To satisfy these requirements, more data need to be pooled at the cen...

Full description

Bibliographic Details
Main Authors: Taha, Zahraa Khduair, Yaw, Chong Tak, Koh, Siaw Paw, Tiong, Sieh Kiong, Kadirgama, Kumaran, Benedict, Foo, Tan, Jian Ding, Balasubramaniam, Yogendra A.L.
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/38111/
http://umpir.ump.edu.my/id/eprint/38111/1/A%20survey%20of%20federated%20learning%20from%20data%20perspective%20in%20the%20healthcare%20domain.pdf
_version_ 1848825423499100160
author Taha, Zahraa Khduair
Yaw, Chong Tak
Koh, Siaw Paw
Tiong, Sieh Kiong
Kadirgama, Kumaran
Benedict, Foo
Tan, Jian Ding
Balasubramaniam, Yogendra A.L.
author_facet Taha, Zahraa Khduair
Yaw, Chong Tak
Koh, Siaw Paw
Tiong, Sieh Kiong
Kadirgama, Kumaran
Benedict, Foo
Tan, Jian Ding
Balasubramaniam, Yogendra A.L.
author_sort Taha, Zahraa Khduair
building UMP Institutional Repository
collection Online Access
description Recent advances in deep learning (DL) have shown that data-driven insights can be used in smart healthcare applications to improve the quality of life for patients. DL needs more data and diversity to build a more accurate system. To satisfy these requirements, more data need to be pooled at the centralized server to train the model deeply, but the process of pooling faces privacy and regulatory challenges. To settle them, the concept of sharing model learning rather than sharing data through federated learning (FL) is proposed. FL creates a more reliable system without transferring data to the server, resulting in the right system with stronger security and access rights to data that protect privacy. This research aims to (1) provide a literature review and an in-depth study on the roles of FL in the fields of healthcare; (2) highlight the effectiveness of current challenges facing standardized FL, including statistical data heterogeneity, privacy and security concerns, expensive communications, limited resources, and efficiency; and (3) present lists of open research challenges and recommendations for future FL for the academic and industrial sectors in telemedicine and remote healthcare applications. An extensive review of the literature on FL from a data-centric perspective was conducted. We searched the Science Direct, IEEE Xplore, and PubMed databases for publications published between January 2018 and January 2023. A new crossover matching between the approaches that solve or mitigate all types of skewed data has been proposed to open up opportunities to other researchers. In addition, a list of various applications was organized by learning application task types such as prediction, diagnosis, and classification. We think that this study can serve as a helpful manual for academics and industry professionals, giving them guidance and important directions for future studies.
first_indexed 2025-11-15T03:28:41Z
format Article
id ump-38111
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:28:41Z
publishDate 2023
publisher Institute of Electrical and Electronics Engineers Inc.
recordtype eprints
repository_type Digital Repository
spelling ump-381112023-09-04T06:31:50Z http://umpir.ump.edu.my/id/eprint/38111/ A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions Taha, Zahraa Khduair Yaw, Chong Tak Koh, Siaw Paw Tiong, Sieh Kiong Kadirgama, Kumaran Benedict, Foo Tan, Jian Ding Balasubramaniam, Yogendra A.L. T Technology (General) TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery TL Motor vehicles. Aeronautics. Astronautics Recent advances in deep learning (DL) have shown that data-driven insights can be used in smart healthcare applications to improve the quality of life for patients. DL needs more data and diversity to build a more accurate system. To satisfy these requirements, more data need to be pooled at the centralized server to train the model deeply, but the process of pooling faces privacy and regulatory challenges. To settle them, the concept of sharing model learning rather than sharing data through federated learning (FL) is proposed. FL creates a more reliable system without transferring data to the server, resulting in the right system with stronger security and access rights to data that protect privacy. This research aims to (1) provide a literature review and an in-depth study on the roles of FL in the fields of healthcare; (2) highlight the effectiveness of current challenges facing standardized FL, including statistical data heterogeneity, privacy and security concerns, expensive communications, limited resources, and efficiency; and (3) present lists of open research challenges and recommendations for future FL for the academic and industrial sectors in telemedicine and remote healthcare applications. An extensive review of the literature on FL from a data-centric perspective was conducted. We searched the Science Direct, IEEE Xplore, and PubMed databases for publications published between January 2018 and January 2023. A new crossover matching between the approaches that solve or mitigate all types of skewed data has been proposed to open up opportunities to other researchers. In addition, a list of various applications was organized by learning application task types such as prediction, diagnosis, and classification. We think that this study can serve as a helpful manual for academics and industry professionals, giving them guidance and important directions for future studies. Institute of Electrical and Electronics Engineers Inc. 2023 Article PeerReviewed pdf en cc_by_nc_nd_4 http://umpir.ump.edu.my/id/eprint/38111/1/A%20survey%20of%20federated%20learning%20from%20data%20perspective%20in%20the%20healthcare%20domain.pdf Taha, Zahraa Khduair and Yaw, Chong Tak and Koh, Siaw Paw and Tiong, Sieh Kiong and Kadirgama, Kumaran and Benedict, Foo and Tan, Jian Ding and Balasubramaniam, Yogendra A.L. (2023) A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions. IEEE Access, 11. pp. 45711-45735. ISSN 2169-3536. (Published) https://doi.org/10.1109/ACCESS.2023.3267964 https://doi.org/10.1109/ACCESS.2023.3267964
spellingShingle T Technology (General)
TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
TL Motor vehicles. Aeronautics. Astronautics
Taha, Zahraa Khduair
Yaw, Chong Tak
Koh, Siaw Paw
Tiong, Sieh Kiong
Kadirgama, Kumaran
Benedict, Foo
Tan, Jian Ding
Balasubramaniam, Yogendra A.L.
A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title_full A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title_fullStr A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title_full_unstemmed A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title_short A survey of federated learning from data perspective in the healthcare domain : Challenges, methods, and future directions
title_sort survey of federated learning from data perspective in the healthcare domain : challenges, methods, and future directions
topic T Technology (General)
TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
TL Motor vehicles. Aeronautics. Astronautics
url http://umpir.ump.edu.my/id/eprint/38111/
http://umpir.ump.edu.my/id/eprint/38111/
http://umpir.ump.edu.my/id/eprint/38111/
http://umpir.ump.edu.my/id/eprint/38111/1/A%20survey%20of%20federated%20learning%20from%20data%20perspective%20in%20the%20healthcare%20domain.pdf