Modelling and simulation of lanthanum (La) and neodymium (Nd) leaching from monazite ore using METSTM
Digestion and leaching are known as part of the main processing pre-treatment method in the extraction of rare earth elements (REEs). This work aims to carry out the sensitivity analysis of the liquid–solid (L/S) ratio, the type of acids as well as the number of reactors for the recovery of REEs, na...
| Main Authors: | , , , , |
|---|---|
| Format: | Conference or Workshop Item |
| Language: | English |
| Published: |
IOP Publishing
2020
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/36672/ http://umpir.ump.edu.my/id/eprint/36672/1/Modelling%20and%20simulation%20of%20lanthanum.pdf |
| Summary: | Digestion and leaching are known as part of the main processing pre-treatment method in the extraction of rare earth elements (REEs). This work aims to carry out the sensitivity analysis of the liquid–solid (L/S) ratio, the type of acids as well as the number of reactors for the recovery of REEs, namely lanthanum (La) and neodymium (Nd) from monazite concentrate through the leaching process. A model was developed and simulated by using METSIM, a software for modelling metallurgical processes. The process was modelled as a two-step process; the first is the digestion, followed by the leaching process to produce monazite leachate. The results show that the optimum L/S ratio was 8:1 to recover the highest amount of REEs, with HCl was found to perform better as a solvent for the recovery of REEs compared to H2SO4. In addition, the optimum recovery of REEs was achieved by using three reactors, which is in the range of 70-95%. |
|---|