Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation

The potential of hybrid nanofluid as an alternative heat transfer fluid is undoubted and the insightful research on enhancing its thermal conductivity is crucial. This study accentuates the influence of magnetic field and thermal radiation on the ethylene glycol base hybrid nanofluid with a combinat...

Full description

Bibliographic Details
Main Authors: Kho, Yap Bing, Rahimah, Jusoh, Mohd Zuki, Salleh, Mohd Hisyam, Ariff, Nooraini, Zainuddin
Format: Article
Language:English
Published: Penerbit Akademia Baru 2022
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/35742/
http://umpir.ump.edu.my/id/eprint/35742/1/Magnetohydrodynamics%20Ag-Fe3O4-Ethylene.pdf
_version_ 1848824859351580672
author Kho, Yap Bing
Rahimah, Jusoh
Mohd Zuki, Salleh
Mohd Hisyam, Ariff
Nooraini, Zainuddin
author_facet Kho, Yap Bing
Rahimah, Jusoh
Mohd Zuki, Salleh
Mohd Hisyam, Ariff
Nooraini, Zainuddin
author_sort Kho, Yap Bing
building UMP Institutional Repository
collection Online Access
description The potential of hybrid nanofluid as an alternative heat transfer fluid is undoubted and the insightful research on enhancing its thermal conductivity is crucial. This study accentuates the influence of magnetic field and thermal radiation on the ethylene glycol base hybrid nanofluid with a combination of argentum and magnetite nanoparticles. The mathematical equations of the hybrid nanofluid model are derived with the suitable similarity transformations and then solved numerically with the execution of bvp4c codes in Matlab software. Graphical results show that an upsurge in magnetic parameter reduces the momentum boundary layer thickness while the higher thermal radiation enlarges the thermal boundary layer thickness. The effects of suction and nanoparticles concentration are also presented graphically. Stability analysis reveals that the first solution obtained in this study is stable, and conversely, the second solution is not.
first_indexed 2025-11-15T03:19:43Z
format Article
id ump-35742
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:19:43Z
publishDate 2022
publisher Penerbit Akademia Baru
recordtype eprints
repository_type Digital Repository
spelling ump-357422025-04-15T04:39:06Z http://umpir.ump.edu.my/id/eprint/35742/ Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation Kho, Yap Bing Rahimah, Jusoh Mohd Zuki, Salleh Mohd Hisyam, Ariff Nooraini, Zainuddin QA Mathematics The potential of hybrid nanofluid as an alternative heat transfer fluid is undoubted and the insightful research on enhancing its thermal conductivity is crucial. This study accentuates the influence of magnetic field and thermal radiation on the ethylene glycol base hybrid nanofluid with a combination of argentum and magnetite nanoparticles. The mathematical equations of the hybrid nanofluid model are derived with the suitable similarity transformations and then solved numerically with the execution of bvp4c codes in Matlab software. Graphical results show that an upsurge in magnetic parameter reduces the momentum boundary layer thickness while the higher thermal radiation enlarges the thermal boundary layer thickness. The effects of suction and nanoparticles concentration are also presented graphically. Stability analysis reveals that the first solution obtained in this study is stable, and conversely, the second solution is not. Penerbit Akademia Baru 2022 Article PeerReviewed pdf en cc_by_nc_4 http://umpir.ump.edu.my/id/eprint/35742/1/Magnetohydrodynamics%20Ag-Fe3O4-Ethylene.pdf Kho, Yap Bing and Rahimah, Jusoh and Mohd Zuki, Salleh and Mohd Hisyam, Ariff and Nooraini, Zainuddin (2022) Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation. CFD Letters, 14 (11). pp. 88-101. ISSN 2180-1363. (Published) https://doi.org/10.37934/cfdl.14.11.88101 https://doi.org/10.37934/cfdl.14.11.88101
spellingShingle QA Mathematics
Kho, Yap Bing
Rahimah, Jusoh
Mohd Zuki, Salleh
Mohd Hisyam, Ariff
Nooraini, Zainuddin
Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title_full Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title_fullStr Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title_full_unstemmed Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title_short Magnetohydrodynamics Ag-Fe3O4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
title_sort magnetohydrodynamics ag-fe3o4-ethylene glycol hybrid nanofluid flow and heat transfer with thermal radiation
topic QA Mathematics
url http://umpir.ump.edu.my/id/eprint/35742/
http://umpir.ump.edu.my/id/eprint/35742/
http://umpir.ump.edu.my/id/eprint/35742/
http://umpir.ump.edu.my/id/eprint/35742/1/Magnetohydrodynamics%20Ag-Fe3O4-Ethylene.pdf