Fault Detection for Automotive Coil Spring Using Signal Processing Analysis

Shock absorber failure can be easily detected during shock absorber utilization in the vehicle. The failure usually happened due to crack propagation under fatigue life of compress and extend operation. To prevent any failures during utilization it is preemptive to detect any possible fault during m...

Full description

Bibliographic Details
Main Authors: Alam, Mohammad Khurshed, M. H., Mohammed Faozi, A. R., Yusoff, M. Z., Zainol, Z., Khalil
Format: Conference or Workshop Item
Published: Springer, Singapore 2022
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/35490/
_version_ 1848824792073895936
author Alam, Mohammad Khurshed
M. H., Mohammed Faozi
A. R., Yusoff
M. Z., Zainol
Z., Khalil
author_facet Alam, Mohammad Khurshed
M. H., Mohammed Faozi
A. R., Yusoff
M. Z., Zainol
Z., Khalil
author_sort Alam, Mohammad Khurshed
building UMP Institutional Repository
collection Online Access
description Shock absorber failure can be easily detected during shock absorber utilization in the vehicle. The failure usually happened due to crack propagation under fatigue life of compress and extend operation. To prevent any failures during utilization it is preemptive to detect any possible fault during manufacturing quality check inspection process. However, it is very difficult to do full check to all finished product due to high time consumption they require. In order to shorten the time, automated checking method are desire. In this study, automotive coil spring health are recognized using signal processing analysis to enable automated line quality check inspection. Fatigue testing machine was use to excite the spring in order to create signal needed in the processing analysis. The analysis was carried out using excitation signal detected along cycle time. Output data for both healthy and faulted springs (pre-inserted cracked) were processed and compared using signal processing analysis. This method shown an accurate consistency for fault detection of crack occurred in automotive spring where the number of peaks and valley of the signal as well as their maximum values not only able to show defective characteristics but also the severity degree of the defect where higher number and frequency density are more severe than not. This method will definitely able to shorten time needed for quality check inspection of cracks when applied in fabrication line compared to conventional method using naked eyes where micro cracks are very hard to detect.
first_indexed 2025-11-15T03:18:39Z
format Conference or Workshop Item
id ump-35490
institution Universiti Malaysia Pahang
institution_category Local University
last_indexed 2025-11-15T03:18:39Z
publishDate 2022
publisher Springer, Singapore
recordtype eprints
repository_type Digital Repository
spelling ump-354902023-04-27T08:26:09Z http://umpir.ump.edu.my/id/eprint/35490/ Fault Detection for Automotive Coil Spring Using Signal Processing Analysis Alam, Mohammad Khurshed M. H., Mohammed Faozi A. R., Yusoff M. Z., Zainol Z., Khalil TJ Mechanical engineering and machinery Shock absorber failure can be easily detected during shock absorber utilization in the vehicle. The failure usually happened due to crack propagation under fatigue life of compress and extend operation. To prevent any failures during utilization it is preemptive to detect any possible fault during manufacturing quality check inspection process. However, it is very difficult to do full check to all finished product due to high time consumption they require. In order to shorten the time, automated checking method are desire. In this study, automotive coil spring health are recognized using signal processing analysis to enable automated line quality check inspection. Fatigue testing machine was use to excite the spring in order to create signal needed in the processing analysis. The analysis was carried out using excitation signal detected along cycle time. Output data for both healthy and faulted springs (pre-inserted cracked) were processed and compared using signal processing analysis. This method shown an accurate consistency for fault detection of crack occurred in automotive spring where the number of peaks and valley of the signal as well as their maximum values not only able to show defective characteristics but also the severity degree of the defect where higher number and frequency density are more severe than not. This method will definitely able to shorten time needed for quality check inspection of cracks when applied in fabrication line compared to conventional method using naked eyes where micro cracks are very hard to detect. Springer, Singapore 2022 Conference or Workshop Item PeerReviewed Alam, Mohammad Khurshed and M. H., Mohammed Faozi and A. R., Yusoff and M. Z., Zainol and Z., Khalil (2022) Fault Detection for Automotive Coil Spring Using Signal Processing Analysis. In: Enabling Industry 4.0 through Advances in Manufacturing and Materials: Selected Articles from iM3F 2021, Malaysia , 20 September 2021 , Virtually hosted by Universiti Malaysia Pahang. pp. 415-426.. ISBN 978-981-19-2890-1 (Published) https://doi.org/10.1007/978-981-19-2890-1_40
spellingShingle TJ Mechanical engineering and machinery
Alam, Mohammad Khurshed
M. H., Mohammed Faozi
A. R., Yusoff
M. Z., Zainol
Z., Khalil
Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title_full Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title_fullStr Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title_full_unstemmed Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title_short Fault Detection for Automotive Coil Spring Using Signal Processing Analysis
title_sort fault detection for automotive coil spring using signal processing analysis
topic TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/35490/
http://umpir.ump.edu.my/id/eprint/35490/