Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering

In the field of computer science, data mining facilitates the extraction of useful knowledge and patterns from a huge amount of data. Various techniques exist in the data mining domain to explore the links, associations, and patterns from data in data warehouses. Among these techniques, clustering...

Full description

Bibliographic Details
Main Authors: Rahmah, Mokhtar, Raza, Muhammad Ahsan, Fauziah, Zainuddin, Nor Azhar, Ahmad, Raza, Muhammad Fahad, Raza, Binish
Format: Article
Language:English
Published: IJCSNS 2021
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/32993/
http://umpir.ump.edu.my/id/eprint/32993/1/analysis%20of%20kmean.pdf
_version_ 1848824152339775488
author Rahmah, Mokhtar
Raza, Muhammad Ahsan
Fauziah, Zainuddin
Nor Azhar, Ahmad
Raza, Muhammad Fahad
Raza, Binish
author_facet Rahmah, Mokhtar
Raza, Muhammad Ahsan
Fauziah, Zainuddin
Nor Azhar, Ahmad
Raza, Muhammad Fahad
Raza, Binish
author_sort Rahmah, Mokhtar
building UMP Institutional Repository
collection Online Access
description In the field of computer science, data mining facilitates the extraction of useful knowledge and patterns from a huge amount of data. Various techniques exist in the data mining domain to explore the links, associations, and patterns from data in data warehouses. Among these techniques, clustering is more prominent in analyzing raw and unlabeled data from a large volume of datasets. The clustering mechanism identifies similar features between data objects and arranges them into clusters. In this paper, we have compared the performance of K-Mean and XMean clustering algorithms using two datasets of student enrollment in higher education institutions. Our methodology incorporated ontology to filter the datasets and exploited Rapidminer environment to evaluate the performance of clustering algorithms. The results showed that X-Mean is more suitable for large datasets in terms of discovery and accuracy of clusters.
first_indexed 2025-11-15T03:08:29Z
format Article
id ump-32993
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T03:08:29Z
publishDate 2021
publisher IJCSNS
recordtype eprints
repository_type Digital Repository
spelling ump-329932022-01-11T09:03:05Z http://umpir.ump.edu.my/id/eprint/32993/ Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering Rahmah, Mokhtar Raza, Muhammad Ahsan Fauziah, Zainuddin Nor Azhar, Ahmad Raza, Muhammad Fahad Raza, Binish QA75 Electronic computers. Computer science In the field of computer science, data mining facilitates the extraction of useful knowledge and patterns from a huge amount of data. Various techniques exist in the data mining domain to explore the links, associations, and patterns from data in data warehouses. Among these techniques, clustering is more prominent in analyzing raw and unlabeled data from a large volume of datasets. The clustering mechanism identifies similar features between data objects and arranges them into clusters. In this paper, we have compared the performance of K-Mean and XMean clustering algorithms using two datasets of student enrollment in higher education institutions. Our methodology incorporated ontology to filter the datasets and exploited Rapidminer environment to evaluate the performance of clustering algorithms. The results showed that X-Mean is more suitable for large datasets in terms of discovery and accuracy of clusters. IJCSNS 2021-10 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/32993/1/analysis%20of%20kmean.pdf Rahmah, Mokhtar and Raza, Muhammad Ahsan and Fauziah, Zainuddin and Nor Azhar, Ahmad and Raza, Muhammad Fahad and Raza, Binish (2021) Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering. International Journal of Computer Science and Network Security, 21 (10). pp. 283-287. ISSN 1738-7906. (Published) http://paper.ijcsns.org/07_book/202110/20211040.pdf
spellingShingle QA75 Electronic computers. Computer science
Rahmah, Mokhtar
Raza, Muhammad Ahsan
Fauziah, Zainuddin
Nor Azhar, Ahmad
Raza, Muhammad Fahad
Raza, Binish
Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title_full Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title_fullStr Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title_full_unstemmed Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title_short Analysis of K-Mean and X-Mean Clustering Algorithms Using Ontology-Based Dataset Filtering
title_sort analysis of k-mean and x-mean clustering algorithms using ontology-based dataset filtering
topic QA75 Electronic computers. Computer science
url http://umpir.ump.edu.my/id/eprint/32993/
http://umpir.ump.edu.my/id/eprint/32993/
http://umpir.ump.edu.my/id/eprint/32993/1/analysis%20of%20kmean.pdf