The classification of skateboarding trick manoeuvres through the integration of IMU and machine learning
The evaluation of tricks executions in skateboarding is commonly carried out subjectively. The panels of judges rely on their prior experience in classifying the effectiveness of tricks performance during skateboarding competitions. This technique of classifying tricks often fell short in providing...
| Main Authors: | Muhammad Amirul, Abdullah, Muhammad Ar Rahim, Ibrahim, Muhammad Nur Aiman, Shapiee, Anwar P. P., Abdul Majeed, Mohd Azraai, Mohd Razman, Rabiu Muazu, Musa, Muhammad Aizzat, Zakaria |
|---|---|
| Format: | Book Chapter |
| Language: | English |
| Published: |
Springer Singapore
2020
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/32626/ http://umpir.ump.edu.my/id/eprint/32626/1/CONFERENCE%20%282%29%20-%20The%20classification%20of%20skateboarding%20tricks%20by%20means%20of%20support%20vector%20machine%20an%20evaluation%20of%20significant%20time-domain%20features.pdf |
Similar Items
The classification of skateboarding Trick Manoeuvres: A Frequency-Domain Evaluation
by: Ibrahim, Muhammad Ar Rahim, et al.
Published: (2020)
by: Ibrahim, Muhammad Ar Rahim, et al.
Published: (2020)
The classification of skateboarding trick manoeuvres: A K-nearest neighbour approach
by: Muhammad Ar Rahim, Ibrahim, et al.
by: Muhammad Ar Rahim, Ibrahim, et al.
The classification of skateboarding trick manoeuvres through the integration of image processing techniques and machine learning
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2019)
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2019)
The classification of skateboard trick manoeuvres through the integration of inertial measurement unit (imu) and machine learning
by: Muhammad Ar Rahim, Ibrahim
Published: (2022)
by: Muhammad Ar Rahim, Ibrahim
Published: (2022)
The classification of skateboarding tricks via transfer learning pipelines
by: Muhammad Amirul, Abdullah, et al.
Published: (2021)
by: Muhammad Amirul, Abdullah, et al.
Published: (2021)
The Classification of Skateboarding Tricks by Means of the Integration of Transfer Learning and Machine Learning Models
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2020)
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2020)
The classification of skateboarding tricks: A support vector machine hyperparameter evaluation optimisation
by: Muhammad Ar Rahim, Ibrahim, et al.
Published: (2021)
by: Muhammad Ar Rahim, Ibrahim, et al.
Published: (2021)
The classification of skateboarding tricks : A transfer learning and machine learning approach
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2020)
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2020)
The classification of skateboarding tricks by means of support vector machine: An evaluation of significant time-domain features
by: Muhammad Amirul, Abdullah, et al.
Published: (2020)
by: Muhammad Amirul, Abdullah, et al.
Published: (2020)
An evaluation of different input transformation for the classification of skateboarding tricks by means of transfer learning
by: Muhammad Amirul, Abdullah, et al.
Published: (2023)
by: Muhammad Amirul, Abdullah, et al.
Published: (2023)
The Effect of Image Input Transformation from Inertial Measurement Unit Data on the Classification of Skateboarding Tricks
by: Muhammad Amirul, Abdullah, et al.
Published: (2021)
by: Muhammad Amirul, Abdullah, et al.
Published: (2021)
The classification of skateboarding tricks by means of the integration of transfer learning models and K-Nearest neighbors
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2022)
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2022)
The classification of skateboarding trick images by means of transfer learning and machine learning models
by: Muhammad Nur Aiman, Shapiee
Published: (2021)
by: Muhammad Nur Aiman, Shapiee
Published: (2021)
Classification of skateboarding tricks by synthesizing transfer learning models and machine learning classifiers using different input signal transformations
by: Muhammad Amirul, Abdullah
Published: (2022)
by: Muhammad Amirul, Abdullah
Published: (2022)
Trucks, tricks, and technologies of government: analyzing the productive encounter between governance and resistance in skateboarding.
by: Lombard, Kara-Jane
Published: (2016)
by: Lombard, Kara-Jane
Published: (2016)
A cluster analysis and artificial neural network of identifying skateboarding talents based on bio-fitness indicators
by: Aina Munirah, Ab Rasid, et al.
Published: (2023)
by: Aina Munirah, Ab Rasid, et al.
Published: (2023)
Physical fitness and motor ability parameters as predictors for skateboarding performance: A logistic regression modelling analysis
by: Aina Munirah, Ab Rasid, et al.
Published: (2024)
by: Aina Munirah, Ab Rasid, et al.
Published: (2024)
Unsupervised Fertigation and Machine Learning for Crop Vegetation Parameter Analysis
by: Mohd Izzat, Mohd Rahman, et al.
Published: (2023)
by: Mohd Izzat, Mohd Rahman, et al.
Published: (2023)
The classification of elbow extension and flexion: A feature selection investigation
by: Mohamad Ilyas, Rizan, et al.
Published: (2020)
by: Mohamad Ilyas, Rizan, et al.
Published: (2020)
The classification of taekwondo kicks via machine learning: A feature selection investigation
by: Muhammad Syafi’i, Mass Duki, et al.
Published: (2021)
by: Muhammad Syafi’i, Mass Duki, et al.
Published: (2021)
Machine learning in aquaculture: hunger classification of Lates calcarifer
by: Mohd Razman, Mohd Azraai, et al.
Published: (2020)
by: Mohd Razman, Mohd Azraai, et al.
Published: (2020)
The classification of heartbeat PCG signals via transfer learning
by: Almanifi, Omair Rashed Abdul Wareth, et al.
Published: (2021)
by: Almanifi, Omair Rashed Abdul Wareth, et al.
Published: (2021)
Rain classification for autonomous vehicle navigation : A support vector machine approach
by: Abdul Haleem, Habeeb Mohamed, et al.
Published: (2020)
by: Abdul Haleem, Habeeb Mohamed, et al.
Published: (2020)
Investigation of features for classification RFID reading between two RFID reader in various support vector machine kernel function
by: Choong, Chun Sern, et al.
Published: (2022)
by: Choong, Chun Sern, et al.
Published: (2022)
The identification of significant mechanomyography time-domain features for the classification of knee motion
by: Said Mohamed, Tarek Mohamed Mahmoud, et al.
Published: (2021)
by: Said Mohamed, Tarek Mohamed Mahmoud, et al.
Published: (2021)
Embodiment in skateboarding videogames
by: Martin, Paul
Published: (2013)
by: Martin, Paul
Published: (2013)
Skateboarders vs Minimalism
by: Gladwell, Shaun
Published: (2016)
by: Gladwell, Shaun
Published: (2016)
Rain classification for autonomous vehicle navigation using machine learning
by: Abdul Haleem Habeeb, Mohamed, et al.
Published: (2021)
by: Abdul Haleem Habeeb, Mohamed, et al.
Published: (2021)
Match outcomes prediction of six top English Premier League clubs via machine learning technique
by: Rabiu Muazu, Musa, et al.
Published: (2018)
by: Rabiu Muazu, Musa, et al.
Published: (2018)
The Classification of Wink-Based EEG Signals: The Identification of Significant Time-Domain Features
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
Effects of coastal development on ship manoeuvring and navigation
by: Mohd. Noor, Hamzah, et al.
Published: (2006)
by: Mohd. Noor, Hamzah, et al.
Published: (2006)
Pallet-level classification using principal component analysis in ensemble learning model
by: Choong, Chun Sern, et al.
Published: (2020)
by: Choong, Chun Sern, et al.
Published: (2020)
An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2020)
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2020)
Glowing with health at IMU
Published: (2011)
Published: (2011)
IMU rated as 'excellent'
Published: (2011)
Published: (2011)
The Classification of Wink-Based EEG Signals: The identification on efficiency of transfer learning models by means of kNN classifier
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021)
The Classification of Hallucination: The Identification of Significant Time-Domain EEG Signals
by: Chin, Hau Lim, et al.
Published: (2022)
by: Chin, Hau Lim, et al.
Published: (2022)
Ball classification through object detection using deep learning for handball
by: Arzielah Ashiqin, Alwi, et al.
Published: (2020)
by: Arzielah Ashiqin, Alwi, et al.
Published: (2020)
Similar Items
-
The classification of skateboarding Trick Manoeuvres: A Frequency-Domain Evaluation
by: Ibrahim, Muhammad Ar Rahim, et al.
Published: (2020) -
The classification of skateboarding trick manoeuvres: A K-nearest neighbour approach
by: Muhammad Ar Rahim, Ibrahim, et al. -
The classification of skateboarding trick manoeuvres through the integration of image processing techniques and machine learning
by: Muhammad Nur Aiman, Shapiee, et al.
Published: (2019) -
The classification of skateboard trick manoeuvres through the integration of inertial measurement unit (imu) and machine learning
by: Muhammad Ar Rahim, Ibrahim
Published: (2022) -
The classification of skateboarding tricks via transfer learning pipelines
by: Muhammad Amirul, Abdullah, et al.
Published: (2021)