HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text
We present a modern hybrid paradigm for managing tacit semantic awareness and qualitative meaning in short texts. The main goals of this proposed technique are to use deep learning approaches to identify multilevel textual sentiment with far less time and more accurate and simple network structure t...
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Universitas Ahmad Dahlan
2021
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/28314/ http://umpir.ump.edu.my/id/eprint/28314/1/HARC-New%20Hybrid%20Method%20with%20Hierarchical.pdf |
| _version_ | 1848823022067122176 |
|---|---|
| author | Islam, Md Shofiqul Sultana, Sunjida Debnath, Uttam Kumar Al Mahmud, Jubayer Islam, S. M. Jahidul |
| author_facet | Islam, Md Shofiqul Sultana, Sunjida Debnath, Uttam Kumar Al Mahmud, Jubayer Islam, S. M. Jahidul |
| author_sort | Islam, Md Shofiqul |
| building | UMP Institutional Repository |
| collection | Online Access |
| description | We present a modern hybrid paradigm for managing tacit semantic awareness and qualitative meaning in short texts. The main goals of this proposed technique are to use deep learning approaches to identify multilevel textual sentiment with far less time and more accurate and simple network structure training for better performance. In this analysis, the proposed new hybrid deep learning HARC model architecture for the recognition of multilevel textual sentiment that combines hierarchical attention with Convolutional Neural
Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM) outperforms other compared approaches. BiGRU and BiLSTM were used in this model to eliminate individual context functions and to adequately manage long-range features. Dilated CNN was used to replicate the retrieved feature by forwarding vector instances for better support in the hierarchical attention layer, and it was used to eliminate better text information using higher coupling correlations. Our method handles the most important features to recover the limitations of handling context and semantics sufficiently. On a variety of datasets, our proposed HARC algorithm solution outperformed traditional machine learning approaches as well as comparable deep learning models by a margin of 1%. The accuracy of the proposed HARC method was
82.50 percent IMDB, 98.00 percent for toxic data, 92.31 percent for Cornflower, and 94.60 percent for Emotion recognition data. Our method works better than other basic and CNN and RNN based hybrid models. In the
future, we will work for more levels of text emotions from long and more complex text. |
| first_indexed | 2025-11-15T02:50:31Z |
| format | Article |
| id | ump-28314 |
| institution | Universiti Malaysia Pahang |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-15T02:50:31Z |
| publishDate | 2021 |
| publisher | Universitas Ahmad Dahlan |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | ump-283142021-05-11T03:08:57Z http://umpir.ump.edu.my/id/eprint/28314/ HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text Islam, Md Shofiqul Sultana, Sunjida Debnath, Uttam Kumar Al Mahmud, Jubayer Islam, S. M. Jahidul QA Mathematics We present a modern hybrid paradigm for managing tacit semantic awareness and qualitative meaning in short texts. The main goals of this proposed technique are to use deep learning approaches to identify multilevel textual sentiment with far less time and more accurate and simple network structure training for better performance. In this analysis, the proposed new hybrid deep learning HARC model architecture for the recognition of multilevel textual sentiment that combines hierarchical attention with Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM) outperforms other compared approaches. BiGRU and BiLSTM were used in this model to eliminate individual context functions and to adequately manage long-range features. Dilated CNN was used to replicate the retrieved feature by forwarding vector instances for better support in the hierarchical attention layer, and it was used to eliminate better text information using higher coupling correlations. Our method handles the most important features to recover the limitations of handling context and semantics sufficiently. On a variety of datasets, our proposed HARC algorithm solution outperformed traditional machine learning approaches as well as comparable deep learning models by a margin of 1%. The accuracy of the proposed HARC method was 82.50 percent IMDB, 98.00 percent for toxic data, 92.31 percent for Cornflower, and 94.60 percent for Emotion recognition data. Our method works better than other basic and CNN and RNN based hybrid models. In the future, we will work for more levels of text emotions from long and more complex text. Universitas Ahmad Dahlan 2021 Article PeerReviewed pdf en cc_by_sa_4 http://umpir.ump.edu.my/id/eprint/28314/1/HARC-New%20Hybrid%20Method%20with%20Hierarchical.pdf Islam, Md Shofiqul and Sultana, Sunjida and Debnath, Uttam Kumar and Al Mahmud, Jubayer and Islam, S. M. Jahidul (2021) HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 7 (1). pp. 142-153. ISSN 2338-3070. (Published) http://journal.uad.ac.id/index.php/JITEKI/article/view/20550 |
| spellingShingle | QA Mathematics Islam, Md Shofiqul Sultana, Sunjida Debnath, Uttam Kumar Al Mahmud, Jubayer Islam, S. M. Jahidul HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title | HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title_full | HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title_fullStr | HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title_full_unstemmed | HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title_short | HARC-New Hybrid Method with Hierarchical Attention Based Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from Text |
| title_sort | harc-new hybrid method with hierarchical attention based bidirectional recurrent neural network with dilated convolutional neural network to recognize multilabel emotions from text |
| topic | QA Mathematics |
| url | http://umpir.ump.edu.my/id/eprint/28314/ http://umpir.ump.edu.my/id/eprint/28314/ http://umpir.ump.edu.my/id/eprint/28314/1/HARC-New%20Hybrid%20Method%20with%20Hierarchical.pdf |