Tribological performance analysis of nanocellulose-AL2O3-engine oil
In the current studies, the nano-lubricants have been the vital role in all machine components in preventing wear and tear due to relative motion between the contact surfaces such as bearings, camshaft, piston, gearbox, lead screw, metal working, fluids, gears, and in automotive air-conditioning. Gi...
| Main Author: | Amirruddin, Abdul Kadir |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2019
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/28000/ http://umpir.ump.edu.my/id/eprint/28000/1/Tribological%20performance%20analysis%20of%20nanocellulose.pdf |
Similar Items
Hybrid nanocellulose-copper (ii) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
by: Sakinah, Hisham, et al.
The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil
by: Sakinah, Muhamad Hisham, et al.
Published: (2016)
by: Sakinah, Muhamad Hisham, et al.
Published: (2016)
Tribological Performance Effect of SiO2 and TiO2 Nanoparticles as Lubricating Oil Additives
by: Wan Azmi, Wan Hamzah, et al.
Published: (2023)
by: Wan Azmi, Wan Hamzah, et al.
Published: (2023)
Study oil thermal-physical properties for nanocellulose nanoparticles for sae40 engine oil for tribological behaviour
by: Norazmira Wati, Awang
Published: (2021)
by: Norazmira Wati, Awang
Published: (2021)
Enhancement of Tribological Behaviour and Thermal Properties of Hybrid Nanocellulose/Copper (II) Oxide Nanolubricant
by: Sakinah, Muhammad Hisham, et al.
Published: (2020)
by: Sakinah, Muhammad Hisham, et al.
Published: (2020)
Characterisation, performance and optimisation of nanocellulose metalworking fluid (MWF) for green machining process
by: M., Samykano, et al.
Published: (2021)
by: M., Samykano, et al.
Published: (2021)
Investigation of dispersion, stability, and tribological performance of oil-based graphene and copper nanofluids
by: Amirruddin, A. K., et al.
by: Amirruddin, A. K., et al.
Investigation of Waste Cooking Oil as a Tribological Lubricant for Piston Skirt Application
by: Amirruddin, Abdul Kadir, et al.
Published: (2016)
by: Amirruddin, Abdul Kadir, et al.
Published: (2016)
A Comprehensive Review on Tribological Behaviourof Hybrid Nanocellulose-CuO as Nanolubricantfor Piston Ring Cylinder Liner Application
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
Statistical analysis on tribology behavior of stainless steel surface in aloe vera blended lubricant
by: Amirruddin, Abdul Kadir, et al.
Published: (2020)
by: Amirruddin, Abdul Kadir, et al.
Published: (2020)
Improving the thermophysical properties of hybrid nanocellulose-copper (II) oxide (CNC-CuO) as a lubricant additives: A novel nanolubricant for tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Tribological and residential air conditioning performance using SiO2-TiO2/PVE nanolubricant
by: Wan Azmi, Wan Hamzah, et al.
Published: (2024)
by: Wan Azmi, Wan Hamzah, et al.
Published: (2024)
Effect Of Gasohol Blends On A Four Cylinder, Port Fuel
Injection Engine Performance
by: Amirruddin, Abdul Kadir
Published: (2009)
by: Amirruddin, Abdul Kadir
Published: (2009)
Tribology performance of TiO2-SiO2/PVE nanolubricant at various binary ratios for the automotive air-conditioning system
by: Safril, ., et al.
Published: (2023)
by: Safril, ., et al.
Published: (2023)
Tribology Investigation of Automotive Air Condition (AAC) compressor by using Al2O3/PAG Nanolubricant / A.R.M. Aminullah...[et al.]
by: A.R.M., Aminullah, et al.
Published: (2018)
by: A.R.M., Aminullah, et al.
Published: (2018)
Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology
by: Mujtaba, Muhammad Abbas, et al.
Published: (2020)
by: Mujtaba, Muhammad Abbas, et al.
Published: (2020)
Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability
by: Sakinah, Hisham, et al.
Published: (2024)
by: Sakinah, Hisham, et al.
Published: (2024)
EME 452 – Tribology [Tribologi]
Duration : 2 hours [Masa : 2 jam]
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2019)
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2019)
The SiO2:TiO2 hybrid biodegradable nanolubricant for sustainable machining: The stability, thermo-physical and tribology perspectives
by: Nurlisa, Hamzan, et al.
Published: (2025)
by: Nurlisa, Hamzan, et al.
Published: (2025)
Evaluation of physicochemical and tribological performances of hBN/WS2 and hBN/TiO2 hybrid nanoparticles-MJO-based oil
by: Ainaa Mardhiah, Sabri, et al.
Published: (2023)
by: Ainaa Mardhiah, Sabri, et al.
Published: (2023)
EME 452 – Tribology (Tribologi)
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2022)
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2022)
EME 452 – Tribology (Tribologi)
by: PPKM, Pusat Pengajian Kejuruteraan Mekanikal
Published: (2024)
by: PPKM, Pusat Pengajian Kejuruteraan Mekanikal
Published: (2024)
A Tribological Analysis of PAO-Based Hybrid SiO2-TiO2 Nanolubricants
by: R.N.R, Ismail, et al.
Published: (2024)
by: R.N.R, Ismail, et al.
Published: (2024)
Enhancing engine oil performance with graphene-cellulose nanoparticles: insights into thermophysical properties and tribological behavior
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
by: Alotaibi, Jasem Ghanem, et al.
Published: (2025)
Tribological Performance of Modified Jatropha Oil Containing Oil-Miscible Ionic Liquid for Machining Applications
by: Amiril Sahab, Abdul Sani, et al.
Published: (2017)
by: Amiril Sahab, Abdul Sani, et al.
Published: (2017)
The tribological behaviour of Al-Si automotive piston material
by: ., Arifutzzaman, et al.
Published: (2011)
by: ., Arifutzzaman, et al.
Published: (2011)
Tribological behavior of waste cooking oil blended lubricant
by: Sakinah, Muhamad Hisham
Published: (2017)
by: Sakinah, Muhamad Hisham
Published: (2017)
Tribological performance of palm oil-based lubricant with nanoparticles additive / Mohamad Faizal Rosli
by: Mohamad Faizal , Rosli
Published: (2019)
by: Mohamad Faizal , Rosli
Published: (2019)
Thermal management of vehicle radiator by nanocellulose with one-dimensional analysis
by: Benedict, F., et al.
Published: (2018)
by: Benedict, F., et al.
Published: (2018)
A comprehensive review on tribological behaviour of hybrid Nanocellulose-CuO as nanolubricant for piston ring cylinder liner application
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
Hybrid nanocellulose-copper (II) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
Published: (2020)
by: Sakinah, Hisham, et al.
Published: (2020)
EME 452 – TRIBOLOGY
Duration: 2 hours
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2021)
by: Mekanik, Pusat Pengajian Kejuruteraan
Published: (2021)
A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque
by: Maisara Mohyeldin, Gasim Mohamed, et al.
Published: (2011)
by: Maisara Mohyeldin, Gasim Mohamed, et al.
Published: (2011)
Effect of AL2O3, SIO2 and CNT nanoparticles blend fuels on diesel engine performances and emission characteristics
by: Anes, G. Mrwan, et al.
Published: (2019)
by: Anes, G. Mrwan, et al.
Published: (2019)
Thermal and tribological properties enhancement of PVE lubricant modified with SiO2 and TiO2 nanoparticles additive
by: Mohd Farid, Ismail, et al.
Published: (2023)
by: Mohd Farid, Ismail, et al.
Published: (2023)
Tribological Properties Of Vegetable Base Oils With
by: Azlin, Mohamad Akmal Fahim
Published: (2021)
by: Azlin, Mohamad Akmal Fahim
Published: (2021)
Comparison Of Bio-Oil And Synthetic Lubricants Tribological Characters
by: Ramlan, Nur Diyana
Published: (2022)
by: Ramlan, Nur Diyana
Published: (2022)
Enhancing tribological performance of electric vehicle lubricants: Nanoparticle-enriched palm oil biolubricants for wear resistance
by: Nugroho, Agus, et al.
Published: (2024)
by: Nugroho, Agus, et al.
Published: (2024)
Tribology, performance and emissions of a two stroke-cycle engine using bio-based lubricant / Muhammad Zulfattah Zakaria
by: Muhammad Zulfattah , Zakaria
Published: (2021)
by: Muhammad Zulfattah , Zakaria
Published: (2021)
Performance of Al2O3-SiO2/PAG employed composite nanolubricant in automotive air conditioning (AAC) system
by: Zawawi, N. M. M., et al.
Published: (2020)
by: Zawawi, N. M. M., et al.
Published: (2020)
Similar Items
-
Hybrid nanocellulose-copper (ii) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al. -
The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil
by: Sakinah, Muhamad Hisham, et al.
Published: (2016) -
Tribological Performance Effect of SiO2 and TiO2 Nanoparticles as Lubricating Oil Additives
by: Wan Azmi, Wan Hamzah, et al.
Published: (2023) -
Study oil thermal-physical properties for nanocellulose nanoparticles for sae40 engine oil for tribological behaviour
by: Norazmira Wati, Awang
Published: (2021) -
Enhancement of Tribological Behaviour and Thermal Properties of Hybrid Nanocellulose/Copper (II) Oxide Nanolubricant
by: Sakinah, Muhammad Hisham, et al.
Published: (2020)