Weld bead profile of laser welding dissimilar joints stainless steel

During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is...

Full description

Bibliographic Details
Main Authors: M., Ishak, S. N., Aqida, Mohammed, Ghusoon R., Abdulhadi, Hassan A.
Format: Conference or Workshop Item
Language:English
Published: IOP Publishing 2017
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless.pdf
_version_ 1848820771716071424
author M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
author_facet M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
author_sort M., Ishak
building UMP Institutional Repository
collection Online Access
description During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 um.
first_indexed 2025-11-15T02:14:45Z
format Conference or Workshop Item
id ump-18846
institution Universiti Malaysia Pahang
institution_category Local University
language English
last_indexed 2025-11-15T02:14:45Z
publishDate 2017
publisher IOP Publishing
recordtype eprints
repository_type Digital Repository
spelling ump-188462018-11-09T01:49:52Z http://umpir.ump.edu.my/id/eprint/18846/ Weld bead profile of laser welding dissimilar joints stainless steel M., Ishak S. N., Aqida Mohammed, Ghusoon R. Abdulhadi, Hassan A. TP Chemical technology During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 um. IOP Publishing 2017-11 Conference or Workshop Item PeerReviewed pdf en cc_by http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless.pdf M., Ishak and S. N., Aqida and Mohammed, Ghusoon R. and Abdulhadi, Hassan A. (2017) Weld bead profile of laser welding dissimilar joints stainless steel. In: IOP Conference Series: Materials Science and Engineering, 4th International Conference on Mechanical Engineering Research (ICMER2017) , 1-2 August 2017 , Kuantan, Pahang, Malaysia. pp. 1-9., 257 (1). ISSN 1757-8981 (Print), 1757-899X (Online) (Published) http://iopscience.iop.org/article/10.1088/1757-899X/257/1/012072
spellingShingle TP Chemical technology
M., Ishak
S. N., Aqida
Mohammed, Ghusoon R.
Abdulhadi, Hassan A.
Weld bead profile of laser welding dissimilar joints stainless steel
title Weld bead profile of laser welding dissimilar joints stainless steel
title_full Weld bead profile of laser welding dissimilar joints stainless steel
title_fullStr Weld bead profile of laser welding dissimilar joints stainless steel
title_full_unstemmed Weld bead profile of laser welding dissimilar joints stainless steel
title_short Weld bead profile of laser welding dissimilar joints stainless steel
title_sort weld bead profile of laser welding dissimilar joints stainless steel
topic TP Chemical technology
url http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/
http://umpir.ump.edu.my/id/eprint/18846/1/Weld%20bead%20profile%20of%20laser%20welding%20dissimilar%20joints%20stainless.pdf