Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive
Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also d...
| Main Authors: | M. A., Hassan, Sakinah, Muhamad Hisham, K., Kadirgama, D., Ramasamy, M. M., Noor, M. M., Rahman |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
World Academy of Science, Engineering and Technology
2016
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/15480/ http://umpir.ump.edu.my/id/eprint/15480/1/fkm-2016-kadirgama-Tribological%20Behaviour%20Improvement.pdf |
Similar Items
Copper (II) Oxide Nanoparticle As Friction Reduction and Anti-Wear Additive In Lubricating Oil
by: H. M., Asnida, et al.
Published: (2016)
by: H. M., Asnida, et al.
Published: (2016)
Tribological behaviour of copper (II) oxide nanoparticles based lubricant to improve durability of contact surface
by: Maizatul Asnida, Hassan
Published: (2018)
by: Maizatul Asnida, Hassan
Published: (2018)
Thermophysical properties and tribological behavior of hybrid cellulose nanocrystal copper (ii) oxide (cnc-cuo) as lubricant additives
by: Sakinah, Muhamad Hisham
Published: (2022)
by: Sakinah, Muhamad Hisham
Published: (2022)
Hybrid nanocellulose-copper (II) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
Published: (2020)
by: Sakinah, Hisham, et al.
Published: (2020)
Hybrid nanocellulose-copper (ii) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
by: Sakinah, Hisham, et al.
Improving the thermophysical properties of hybrid nanocellulose-copper (II) oxide (CNC-CuO) as a lubricant additives: A novel nanolubricant for tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Enhancement of Tribological Behaviour and Thermal Properties of Hybrid Nanocellulose/Copper (II) Oxide Nanolubricant
by: Sakinah, Muhammad Hisham, et al.
Published: (2020)
by: Sakinah, Muhammad Hisham, et al.
Published: (2020)
Enhancement of tribological behaviour and thermophysical properties of engine oil lubricant by Graphene/Co-Cr nanoparticle additives for preparation of stable nanolubricant
by: M., Sandhya, et al.
Published: (2021)
by: M., Sandhya, et al.
Published: (2021)
Properties and tribological evaluation of graphene and fullerene nanoparticles as additives in oil lubrication
by: Sharuddin, Muhammad Hazman, et al.
Published: (2023)
by: Sharuddin, Muhammad Hazman, et al.
Published: (2023)
Tribological behavior of waste cooking oil blended lubricant
by: Sakinah, Muhamad Hisham
Published: (2017)
by: Sakinah, Muhamad Hisham
Published: (2017)
Prediction and Optimization of Thermophysical Properties of Hybrid Cellulose Nanocrystal-Copper (II) Oxide Nanolubricant for Tribology Application
by: Sakinah, Hisham, et al.
Published: (2023)
by: Sakinah, Hisham, et al.
Published: (2023)
Dispersion and tribological behaviours of modified functionalized surfaces of single and hybrid nanoparticles in water-based lubrication
by: Azizan, M.A.H., et al.
Published: (2024)
by: Azizan, M.A.H., et al.
Published: (2024)
Tribological Performance Effect of SiO2 and TiO2 Nanoparticles as Lubricating Oil Additives
by: Wan Azmi, Wan Hamzah, et al.
Published: (2023)
by: Wan Azmi, Wan Hamzah, et al.
Published: (2023)
Tribological improvement using ionic liquids as additives in synthetic and bio-based lubricants for steel-steel contacts
by: Syahir, A. Z., et al.
Published: (2019)
by: Syahir, A. Z., et al.
Published: (2019)
Tribological performance of palm oil-based lubricant with nanoparticles additive / Mohamad Faizal Rosli
by: Mohamad Faizal , Rosli
Published: (2019)
by: Mohamad Faizal , Rosli
Published: (2019)
Influence of graphene and multi-walled carbon nanotube additives on tribological behaviour of lubricants
by: Singh, R., et al.
Published: (2018)
by: Singh, R., et al.
Published: (2018)
Copper (II) oxide nanoparticles as additve in engine oil to increase the durability of piston-liner contact
by: Asnida, M., et al.
Published: (2018)
by: Asnida, M., et al.
Published: (2018)
Investigation of Waste Cooking Oil as a Tribological Lubricant for Piston Skirt Application
by: Amirruddin, Abdul Kadir, et al.
Published: (2016)
by: Amirruddin, Abdul Kadir, et al.
Published: (2016)
Statistical analysis on tribology behavior of stainless steel surface in aloe vera blended lubricant
by: Amirruddin, Abdul Kadir, et al.
Published: (2020)
by: Amirruddin, Abdul Kadir, et al.
Published: (2020)
Copper (II) oxide nanoparticles as additives in RBD palm olein : Experimental analysis and mathematical modelling
by: Nurhanis Sofiah, Abd Ghafar, et al.
Published: (2022)
by: Nurhanis Sofiah, Abd Ghafar, et al.
Published: (2022)
Thermal and tribological properties enhancement of PVE lubricant modified with SiO2 and tio2 nanoparticles additive
by: Mohd Farid, Ismail, et al.
Published: (2023)
by: Mohd Farid, Ismail, et al.
Published: (2023)
Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability
by: Sakinah, Hisham, et al.
Published: (2024)
by: Sakinah, Hisham, et al.
Published: (2024)
Thermal and tribological properties enhancement of PVE lubricant modified with SiO2 and TiO2 nanoparticles additive
by: Mohd Farid, Ismail, et al.
Published: (2023)
by: Mohd Farid, Ismail, et al.
Published: (2023)
A comprehensive review on tribological behaviour of hybrid Nanocellulose-CuO as nanolubricant for piston ring cylinder liner application
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
by: Sakinah, Muhamad Hisham, et al.
Published: (2024)
Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil
by: N. W., Awang, et al.
Published: (2019)
by: N. W., Awang, et al.
Published: (2019)
Effect of using anti-wear and friction modifier-based additives on tribological performance of engine lubricants
by: Arman, Salih, et al.
Published: (2022)
by: Arman, Salih, et al.
Published: (2022)
Tribological performance of palmitic acid as lubricant additives for rotary compressor / Abdul Halim Ahmad
by: Abdul Halim, Ahmad
Published: (2014)
by: Abdul Halim, Ahmad
Published: (2014)
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology
by: Mujtaba, Muhammad Abbas, et al.
Published: (2020)
by: Mujtaba, Muhammad Abbas, et al.
Published: (2020)
Investigation of dispersion, stability, and tribological performance of oil-based graphene and copper nanofluids
by: Amirruddin, A. K., et al.
by: Amirruddin, A. K., et al.
Improvement in stability and thermophysical properties of CNC-MXene nanolubricant for Tribology application
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
by: Mohd Kamal, Kamarulzaman, et al.
Published: (2023)
The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil
by: Sakinah, Muhamad Hisham, et al.
Published: (2016)
by: Sakinah, Muhamad Hisham, et al.
Published: (2016)
Influence of propylene glycol on the tribological performance and lubrication mechanism of water-based lubricants incorporating silicon carbide, magnesium oxide and aluminium oxide nanoadditives
by: Azizan, Muhammad Ashman Hakimi, et al.
Published: (2025)
by: Azizan, Muhammad Ashman Hakimi, et al.
Published: (2025)
Controlled release electrochemical synthesis and cytotoxicity study of copper(II) nanoparticles in copper(II) decanoate complex
by: M.Nordin, Norazzizi Atiqah, et al.
Published: (2018)
by: M.Nordin, Norazzizi Atiqah, et al.
Published: (2018)
Lubricating grease from spent bleaching earth and waste cooking oil: Tribology properties
by: Abdulbari, Hayder A., et al.
Published: (2011)
by: Abdulbari, Hayder A., et al.
Published: (2011)
Additive manufacture with copper and silver nanoparticles
by: Pervan, David
Published: (2020)
by: Pervan, David
Published: (2020)
Comparison Of Bio-Oil And Synthetic Lubricants Tribological Characters
by: Ramlan, Nur Diyana
Published: (2022)
by: Ramlan, Nur Diyana
Published: (2022)
Tribological study of polyol ester-based biolubricants and the effect of molybdenum sulphide as lubricant additives / Nurul Adzlin Zainal
by: Nurul Adzlin, Zainal
Published: (2019)
by: Nurul Adzlin, Zainal
Published: (2019)
Classification of lubricants base oils for nanolubricants applications—A review
by: G., Kadirgama, et al.
Published: (2023)
by: G., Kadirgama, et al.
Published: (2023)
Tribological study of nanoparticles enrichedbio-based lubricants for engine piston ring–cylinder interaction / Mubashir Gulzar
by: Mubashir, Gulzar
Published: (2017)
by: Mubashir, Gulzar
Published: (2017)
Similar Items
-
Copper (II) Oxide Nanoparticle As Friction Reduction and Anti-Wear Additive In Lubricating Oil
by: H. M., Asnida, et al.
Published: (2016) -
Tribological behaviour of copper (II) oxide nanoparticles based lubricant to improve durability of contact surface
by: Maizatul Asnida, Hassan
Published: (2018) -
Thermophysical properties and tribological behavior of hybrid cellulose nanocrystal copper (ii) oxide (cnc-cuo) as lubricant additives
by: Sakinah, Muhamad Hisham
Published: (2022) -
Hybrid nanocellulose-copper (II) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.
Published: (2020) -
Hybrid nanocellulose-copper (ii) oxide as engine oil additives for tribological behavior improvement
by: Sakinah, Hisham, et al.