Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying

This research proposes a parameter estimation method that minimizes a probability generating function (pgf) based power divergence with a tuning parameter to mitigate the impact of data contamination. Special cases arise when the tuning parameter approaches zero, resulting in a Kullback-Leibler t...

Full description

Bibliographic Details
Main Author: Tay, Siew Ying
Format: Thesis
Published: 2018
Subjects:
Online Access:http://studentsrepo.um.edu.my/9535/
http://studentsrepo.um.edu.my/9535/1/Tay_Siew_Ying.pdf
http://studentsrepo.um.edu.my/9535/9/siew_ying.pdf
_version_ 1848773946377240576
author Tay, Siew Ying
author_facet Tay, Siew Ying
author_sort Tay, Siew Ying
building UM Research Repository
collection Online Access
description This research proposes a parameter estimation method that minimizes a probability generating function (pgf) based power divergence with a tuning parameter to mitigate the impact of data contamination. Special cases arise when the tuning parameter approaches zero, resulting in a Kullback-Leibler type divergence, and when it takes on the value of one, resulting in a pgf-based
first_indexed 2025-11-14T13:50:29Z
format Thesis
id um-9535
institution University Malaya
institution_category Local University
last_indexed 2025-11-14T13:50:29Z
publishDate 2018
recordtype eprints
repository_type Digital Repository
spelling um-95352021-07-13T19:13:48Z Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying Tay, Siew Ying Q Science (General) This research proposes a parameter estimation method that minimizes a probability generating function (pgf) based power divergence with a tuning parameter to mitigate the impact of data contamination. Special cases arise when the tuning parameter approaches zero, resulting in a Kullback-Leibler type divergence, and when it takes on the value of one, resulting in a pgf-based 2018-09 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/9535/1/Tay_Siew_Ying.pdf application/pdf http://studentsrepo.um.edu.my/9535/9/siew_ying.pdf Tay, Siew Ying (2018) Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying. Masters thesis, University of Malaya. http://studentsrepo.um.edu.my/9535/
spellingShingle Q Science (General)
Tay, Siew Ying
Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title_full Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title_fullStr Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title_full_unstemmed Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title_short Parameter estimation using generating function based minimum power divergence measure / Tay Siew Ying
title_sort parameter estimation using generating function based minimum power divergence measure / tay siew ying
topic Q Science (General)
url http://studentsrepo.um.edu.my/9535/
http://studentsrepo.um.edu.my/9535/1/Tay_Siew_Ying.pdf
http://studentsrepo.um.edu.my/9535/9/siew_ying.pdf