Processing time estimation in precision machining industry using AI / Lim Say Li

Processing time estimation of a machining process is a crucial task in order to gain higher profits, stand out amongst the competition and also grow the customer portfolio in precision machining industry. By having an accurate processing time estimation, a wellplanned production schedule can be e...

Full description

Bibliographic Details
Main Author: Lim, Say Li
Format: Thesis
Published: 2017
Subjects:
Online Access:http://studentsrepo.um.edu.my/8488/
http://studentsrepo.um.edu.my/8488/7/PROCESSING_TIME_ESTIMATION_IN_PRECISION_MACHINING_INDUSTRY_USING_AI.pdf
_version_ 1848773671514013696
author Lim, Say Li
author_facet Lim, Say Li
author_sort Lim, Say Li
building UM Research Repository
collection Online Access
description Processing time estimation of a machining process is a crucial task in order to gain higher profits, stand out amongst the competition and also grow the customer portfolio in precision machining industry. By having an accurate processing time estimation, a wellplanned production schedule can be established and machine capacity availability can be checked to meet customer�s estimated time of delivery (ETD). These time estimations are usually done and revised by a tooling process expert. However, the estimation of each and every individual is different based on their knowledge and experiences. In this research, a system is designed to estimate processing time by using artificial intelligence knowledge. Wire electrical discharge machining (WEDM) process is focused and the time taken for the processing is analysed. Input variables such as material type of job, size of copper wire used to run the process, operation mode set for the WEDM machine, number of cuts and the thickness of workpiece are considered as important in estimating the processing time. The objectives of this project are to design a system for processing time estimation, to estimate the processing time required for specific machining process and to verify the accuracy of processing time estimation. Neural Network (NN) model is chosen as the artificial intelligence approach used in this research. Levenberg-Marquardt algorithm is used as the training algorithm. The results show that the data best validation performance is 7.1085 at epoch 27. An AI approach for processing time estimation by implementing desired input parameters and machining data is tested and completed. Keywords: artificial intelligence, artificial neural network, precision machining, time estimation
first_indexed 2025-11-14T13:46:07Z
format Thesis
id um-8488
institution University Malaya
institution_category Local University
last_indexed 2025-11-14T13:46:07Z
publishDate 2017
recordtype eprints
repository_type Digital Repository
spelling um-84882020-06-15T19:40:06Z Processing time estimation in precision machining industry using AI / Lim Say Li Lim, Say Li T Technology (General) TJ Mechanical engineering and machinery Processing time estimation of a machining process is a crucial task in order to gain higher profits, stand out amongst the competition and also grow the customer portfolio in precision machining industry. By having an accurate processing time estimation, a wellplanned production schedule can be established and machine capacity availability can be checked to meet customer�s estimated time of delivery (ETD). These time estimations are usually done and revised by a tooling process expert. However, the estimation of each and every individual is different based on their knowledge and experiences. In this research, a system is designed to estimate processing time by using artificial intelligence knowledge. Wire electrical discharge machining (WEDM) process is focused and the time taken for the processing is analysed. Input variables such as material type of job, size of copper wire used to run the process, operation mode set for the WEDM machine, number of cuts and the thickness of workpiece are considered as important in estimating the processing time. The objectives of this project are to design a system for processing time estimation, to estimate the processing time required for specific machining process and to verify the accuracy of processing time estimation. Neural Network (NN) model is chosen as the artificial intelligence approach used in this research. Levenberg-Marquardt algorithm is used as the training algorithm. The results show that the data best validation performance is 7.1085 at epoch 27. An AI approach for processing time estimation by implementing desired input parameters and machining data is tested and completed. Keywords: artificial intelligence, artificial neural network, precision machining, time estimation 2017 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/8488/7/PROCESSING_TIME_ESTIMATION_IN_PRECISION_MACHINING_INDUSTRY_USING_AI.pdf Lim, Say Li (2017) Processing time estimation in precision machining industry using AI / Lim Say Li. Masters thesis, University of Malaya. http://studentsrepo.um.edu.my/8488/
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Lim, Say Li
Processing time estimation in precision machining industry using AI / Lim Say Li
title Processing time estimation in precision machining industry using AI / Lim Say Li
title_full Processing time estimation in precision machining industry using AI / Lim Say Li
title_fullStr Processing time estimation in precision machining industry using AI / Lim Say Li
title_full_unstemmed Processing time estimation in precision machining industry using AI / Lim Say Li
title_short Processing time estimation in precision machining industry using AI / Lim Say Li
title_sort processing time estimation in precision machining industry using ai / lim say li
topic T Technology (General)
TJ Mechanical engineering and machinery
url http://studentsrepo.um.edu.my/8488/
http://studentsrepo.um.edu.my/8488/7/PROCESSING_TIME_ESTIMATION_IN_PRECISION_MACHINING_INDUSTRY_USING_AI.pdf