Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong

Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 M...

Full description

Bibliographic Details
Main Author: Wong , Jian Yong
Format: Thesis
Published: 2021
Subjects:
Online Access:http://studentsrepo.um.edu.my/12911/
http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf
http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf
_version_ 1848774752290734080
author Wong , Jian Yong
author_facet Wong , Jian Yong
author_sort Wong , Jian Yong
building UM Research Repository
collection Online Access
description Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗k i=1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki =1Ai) for all A1 ∈ S1,n1 , . . . ,Ak ∈ Sk,nk , where Si,ni = { E(ni) st + αE(ni) pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers } and E(ni) st is the standard matrix unit inMni for i = 1, . . . , k. In particular, we show that ψ :Mn1 →Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar λ ∈ F and an additive map μ :Mn1 → F such that ψ(A) = λA + μ(A)In1 for all A ∈ Mn1 , where In1 ∈ Mn1 is the identity matrix. As an application, we classify additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗ki =1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki=1Ai) for all A1 ∈ Rn1 r1 , . . . ,Ak ∈ Rnk rk . Here, Rni ri denotes the set of rank ri matrices inMni and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and |F| = 2 for i = 1, . . . , k.
first_indexed 2025-11-14T14:03:18Z
format Thesis
id um-12911
institution University Malaya
institution_category Local University
last_indexed 2025-11-14T14:03:18Z
publishDate 2021
recordtype eprints
repository_type Digital Repository
spelling um-129112022-02-28T23:55:46Z Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong Wong , Jian Yong QA Mathematics Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗k i=1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki =1Ai) for all A1 ∈ S1,n1 , . . . ,Ak ∈ Sk,nk , where Si,ni = { E(ni) st + αE(ni) pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers } and E(ni) st is the standard matrix unit inMni for i = 1, . . . , k. In particular, we show that ψ :Mn1 →Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar λ ∈ F and an additive map μ :Mn1 → F such that ψ(A) = λA + μ(A)In1 for all A ∈ Mn1 , where In1 ∈ Mn1 is the identity matrix. As an application, we classify additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗ki =1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki=1Ai) for all A1 ∈ Rn1 r1 , . . . ,Ak ∈ Rnk rk . Here, Rni ri denotes the set of rank ri matrices inMni and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and |F| = 2 for i = 1, . . . , k. 2021-05 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf application/pdf http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf Wong , Jian Yong (2021) Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong. Masters thesis, Universiti Malaya. http://studentsrepo.um.edu.my/12911/
spellingShingle QA Mathematics
Wong , Jian Yong
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title_full Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title_fullStr Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title_full_unstemmed Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title_short Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
title_sort commuting additive maps on tensor products of matrix algebras / wong jian yong
topic QA Mathematics
url http://studentsrepo.um.edu.my/12911/
http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf
http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf